Abstract:
The Hermite–Padé approximants with common denominator are considered for a pair of Stieltjes functions with weights xαe−β1x and xαe−β2x, where α>−1, β2>β1>0. On the basis of the method of the Riemann–Hilbert matrix problem the strong asymptotics of these approximants are found in the case β2/β1<3+2√2. The limiting distribution of the zeros of the denominators of the Hermite–Padé approximants is shown to be equal to the equilibrium measure of a certain Nikishin system.
Citation:
V. G. Lysov, “Strong asymptotics of the Hermite–Padé approximants for a system of Stieltjes functions with Laguerre weight”, Sb. Math., 196:12 (2005), 1815–1840
\Bibitem{Lys05}
\by V.~G.~Lysov
\paper Strong asymptotics of the Hermite--Pad\'e approximants for a system of Stieltjes functions with Laguerre weight
\jour Sb. Math.
\yr 2005
\vol 196
\issue 12
\pages 1815--1840
\mathnet{http://mi.mathnet.ru/eng/sm1444}
\crossref{https://doi.org/10.1070/SM2005v196n12ABEH003741}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2225208}
\zmath{https://zbmath.org/?q=an:1134.41315}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000235973300011}
\elib{https://elibrary.ru/item.asp?id=9154710}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645162674}
Linking options:
https://www.mathnet.ru/eng/sm1444
https://doi.org/10.1070/SM2005v196n12ABEH003741
https://www.mathnet.ru/eng/sm/v196/i12/p99
This publication is cited in the following 21 articles: