Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 10, Pages 1495–1502
DOI: https://doi.org/10.1070/SM2005v196n10ABEH003709
(Mi sm1427)
 

This article is cited in 2 scientific papers (total in 2 papers)

Uniform distribution and Voronoi convergence

V. V. Kozlova, T. V. Madsenb

a Steklov Mathematical Institute, Russian Academy of Sciences
b Aalborg University
References:
Abstract: There is a broad generalization of a uniformly distributed sequence according to Weyl where the frequency of elements of this sequence falling into an interval is defined by using a matrix summation method of a general form. In the present paper conditions for uniform distribution are found in the case where a regular Voronoi method is chosen as the summation method. The proofs are based on estimates of trigonometric sums of a certain special type. It is shown that the sequence of the fractional parts of the logarithms of positive integers is not uniformly distributed for any choice of a regular Voronoi method.
Received: 02.02.2005
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 10, Pages 103–110
DOI: https://doi.org/10.4213/sm1427
Bibliographic databases:
Document Type: Article
UDC: 510.6
MSC: Primary 11J71, 40A05; Secondary 11K06, 40A05
Language: English
Original paper language: Russian
Citation: V. V. Kozlov, T. V. Madsen, “Uniform distribution and Voronoi convergence”, Mat. Sb., 196:10 (2005), 103–110; Sb. Math., 196:10 (2005), 1495–1502
Citation in format AMSBIB
\Bibitem{KozMad05}
\by V.~V.~Kozlov, T.~V.~Madsen
\paper Uniform distribution and Voronoi convergence
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 10
\pages 103--110
\mathnet{http://mi.mathnet.ru/sm1427}
\crossref{https://doi.org/10.4213/sm1427}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195663}
\zmath{https://zbmath.org/?q=an:1142.11342}
\elib{https://elibrary.ru/item.asp?id=9154697}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 10
\pages 1495--1502
\crossref{https://doi.org/10.1070/SM2005v196n10ABEH003709}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234430900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31144469649}
Linking options:
  • https://www.mathnet.ru/eng/sm1427
  • https://doi.org/10.1070/SM2005v196n10ABEH003709
  • https://www.mathnet.ru/eng/sm/v196/i10/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:632
    Russian version PDF:209
    English version PDF:19
    References:101
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024