Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 10, Pages 1403–1420
DOI: https://doi.org/10.1070/SM2005v196n10ABEH003706
(Mi sm1424)
 

The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line

L. A. Beklaryan
References:
Abstract: This paper is devoted to the substantiation of a criterion for the quasisymmetric conjugacy of an arbitrary group of homeomorphisms of the real line to a group of affine transformations (the Ahlfors problem). In a criterion suggested by Hinkkanen the constants in the definition of a quasisymmetric homeomorphism were assumed to be uniformly bounded for all elements of the group. Subsequently, for orientation-preserving groups this author put forward a more relaxed criterion, in which one assumes only the uniform boundedness of constants for each cyclic subgroup. In the present paper this relaxed criterion is proved for an arbitrary group of line homeomorphisms, which do not necessarily preserve the orientation.
Received: 09.06.2004 and 18.01.2005
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 10, Pages 3–20
DOI: https://doi.org/10.4213/sm1424
Bibliographic databases:
UDC: 512.54
MSC: Primary 54H15; Secondary 20F38, 28D99
Language: English
Original paper language: Russian
Citation: L. A. Beklaryan, “The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line”, Mat. Sb., 196:10 (2005), 3–20; Sb. Math., 196:10 (2005), 1403–1420
Citation in format AMSBIB
\Bibitem{Bek05}
\by L.~A.~Beklaryan
\paper The structure of a group quasisymmetrically conjugate to a group of affine transformations of the real line
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 10
\pages 3--20
\mathnet{http://mi.mathnet.ru/sm1424}
\crossref{https://doi.org/10.4213/sm1424}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195660}
\zmath{https://zbmath.org/?q=an:1142.54018}
\elib{https://elibrary.ru/item.asp?id=9154694}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 10
\pages 1403--1420
\crossref{https://doi.org/10.1070/SM2005v196n10ABEH003706}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234430900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31144469421}
Linking options:
  • https://www.mathnet.ru/eng/sm1424
  • https://doi.org/10.1070/SM2005v196n10ABEH003706
  • https://www.mathnet.ru/eng/sm/v196/i10/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:291
    Russian version PDF:189
    English version PDF:14
    References:49
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024