Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 9, Pages 1319–1348
DOI: https://doi.org/10.1070/SM2005v196n09ABEH003645
(Mi sm1421)
 

This article is cited in 8 scientific papers (total in 8 papers)

Exponential solubility classes in a problem for the heat equation with a non-local condition for the time averages

A. Yu. Popova, I. V. Tikhonovb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Engineering Physics Institute (State University)
References:
Abstract: A non-local problem (with respect to time) for the heat equation is considered for $x\in\mathbb R^n$, $ 0\leqslant t\leqslant T$: find a function $u(x,t)$ such that
$$ \frac{\partial u}{\partial t}=\Delta u,\qquad \frac1T\int_0^Tu(x,t)\,dt=\varphi(x). $$
An explicit formula for the solution is found. The question of its applicability is discussed. A description of well-posedness classes is presented. The main conjecture is as follows: as $|x|\to\infty$, the solution $u(x,t)$ grows no more rapidly than $\exp(\sigma|x|)$ with $\sigma<\sqrt{\pi/T}$ .
Received: 14.10.2004
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 9, Pages 71–102
DOI: https://doi.org/10.4213/sm1421
Bibliographic databases:
UDC: 517.956
MSC: 35K05
Language: English
Original paper language: Russian
Citation: A. Yu. Popov, I. V. Tikhonov, “Exponential solubility classes in a problem for the heat equation with a non-local condition for the time averages”, Mat. Sb., 196:9 (2005), 71–102; Sb. Math., 196:9 (2005), 1319–1348
Citation in format AMSBIB
\Bibitem{PopTik05}
\by A.~Yu.~Popov, I.~V.~Tikhonov
\paper Exponential solubility classes in a problem for the~heat equation with a~non-local condition for the~time averages
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 9
\pages 71--102
\mathnet{http://mi.mathnet.ru/sm1421}
\crossref{https://doi.org/10.4213/sm1421}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2195708}
\zmath{https://zbmath.org/?q=an:1148.35327}
\elib{https://elibrary.ru/item.asp?id=9188964}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 9
\pages 1319--1348
\crossref{https://doi.org/10.1070/SM2005v196n09ABEH003645}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000234430900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-31344466781}
Linking options:
  • https://www.mathnet.ru/eng/sm1421
  • https://doi.org/10.1070/SM2005v196n09ABEH003645
  • https://www.mathnet.ru/eng/sm/v196/i9/p71
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:814
    Russian version PDF:323
    English version PDF:33
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024