Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1993, Volume 74, Issue 2, Pages 475–485
DOI: https://doi.org/10.1070/SM1993v074n02ABEH003357
(Mi sm1411)
 

This article is cited in 9 scientific papers (total in 9 papers)

The Euler equations with dissipation

A. A. Ilyin

Hydrometeorological Centre of USSR
References:
Abstract: Steady-state and time-dependent problems are studied for the equation
$$ \partial_tu+\Pi(\nabla_uu)=-\sigma u+f, $$
Where $u\in TM$, $M$ is a two-dimensional closed manifold, and $\Pi$ is the projection onto the subspace of solenoidal vector fields that admit a single-valued flow function. Existence of steady-state solutions is proved. For the evolution problem Lyapunov stability of the zero solution in Sobolev–Liouville spaces is proved by the method of vanishing viscosity. The existence of generalized weak $(\Pi W_{2k}^1,\Pi W_{2kw}^1)$ attractors, $k\geqslant1$ an integer, is proved. A $*$-weak $(\mathring{L}_\infty,\mathring{L}_{\infty\,*\text{-}\omega})$ attractor is constructed in the phase space $\mathring{L}_\infty$ for the velocity vortex equation.
Received: 25.06.1990
Bibliographic databases:
MSC: Primary 76C05; Secondary 76E99, 86A10
Language: English
Original paper language: Russian
Citation: A. A. Ilyin, “The Euler equations with dissipation”, Math. USSR-Sb., 74:2 (1993), 475–485
Citation in format AMSBIB
\Bibitem{Ily91}
\by A.~A.~Ilyin
\paper The Euler equations with dissipation
\jour Math. USSR-Sb.
\yr 1993
\vol 74
\issue 2
\pages 475--485
\mathnet{http://mi.mathnet.ru//eng/sm1411}
\crossref{https://doi.org/10.1070/SM1993v074n02ABEH003357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1138632}
\zmath{https://zbmath.org/?q=an:0774.35057|0766.35038}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..74..475I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KY61400011}
Linking options:
  • https://www.mathnet.ru/eng/sm1411
  • https://doi.org/10.1070/SM1993v074n02ABEH003357
  • https://www.mathnet.ru/eng/sm/v182/i12/p1729
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024