Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1993, Volume 74, Issue 2, Pages 271–290
DOI: https://doi.org/10.1070/SM1993v074n02ABEH003347
(Mi sm1386)
 

This article is cited in 17 scientific papers (total in 17 papers)

Numerical results on best uniform rational approximation of $|x|$ on $[-1,1]$

R. S. Vargaa, A. Ruttana, A. J. Carpenterb

a Kent State University
b Butler University
References:
Abstract: With $E_{n,n}(|x|;[-1,1])$ denoting the error of best uniform rational approximation from $\pi_{n,n}$ to $|x|$ on $[-1,1]$, we determine the numbers $\{E_{2n,2n}(|x|;[-1,1])\}_{n=1}^{40}$, where each of these numbers was calculated with a precision of at least 200 significant digits. With these numbers, the Richardson extrapolation method was applied to the products $\{e^{\pi\sqrt{2n}}E_{2n,2n}(|x|;[-1,1])\}_{n=1}^{40}$, and it appears, to at least 10 significant digits, that
$$ 8\stackrel{?}{=}\lim_{n\to\infty}e^{\pi\sqrt{2n}}E_{2n,2n}(|x|;[-1,1]), $$
which gives rise to an interesting new conjecture in the theory of rational approximation.
Received: 12.10.1990
Russian version:
Matematicheskii Sbornik, 1991, Volume 182, Number 11, Pages 1523–1541
Bibliographic databases:
UDC: 517.53
MSC: 41A20, 41A50, 65D10
Language: English
Original paper language: Russian
Citation: R. S. Varga, A. Ruttan, A. J. Carpenter, “Numerical results on best uniform rational approximation of $|x|$ on $[-1,1]$”, Mat. Sb., 182:11 (1991), 1523–1541; Math. USSR-Sb., 74:2 (1993), 271–290
Citation in format AMSBIB
\Bibitem{VarRutCar91}
\by R.~S.~Varga, A.~Ruttan, A.~J.~Carpenter
\paper Numerical results on best uniform rational approximation of~$|x|$ on~$[-1,1]$
\jour Mat. Sb.
\yr 1991
\vol 182
\issue 11
\pages 1523--1541
\mathnet{http://mi.mathnet.ru/sm1386}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1137861}
\zmath{https://zbmath.org/?q=an:0774.65008|0739.65010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..74..271V}
\transl
\jour Math. USSR-Sb.
\yr 1993
\vol 74
\issue 2
\pages 271--290
\crossref{https://doi.org/10.1070/SM1993v074n02ABEH003347}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KY61400001}
Linking options:
  • https://www.mathnet.ru/eng/sm1386
  • https://doi.org/10.1070/SM1993v074n02ABEH003347
  • https://www.mathnet.ru/eng/sm/v182/i11/p1523
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:471
    Russian version PDF:136
    English version PDF:21
    References:63
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024