Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1993, Volume 74, Issue 1, Pages 111–118
DOI: https://doi.org/10.1070/SM1993v074n01ABEH003338
(Mi sm1373)
 

This article is cited in 1 scientific paper (total in 1 paper)

A description of the sets of Lebesque points and points of summability for a Fourier series

A. M. Diyachkov
References:
Abstract: The set of Lebesgue points of a locally integrable function on $N$-dimensional Euclidean space $\mathbf R^N$, $N\geqslant1$, is an $F_{\sigma\delta}$-set of full measure. In this article it is shown that every $F_{\sigma\delta}$-set of full measure is the set of Lebesgue points of some measurable bounded function, and, further, that a set with these properties is the set of points of convergence and nontangential (stable) convergence of a singular integral of convolution type:
$$ \varphi_\varepsilon\ast f(x), \quad \varphi_\varepsilon(t)=\varepsilon^{-N}\varphi(t/\varepsilon)\in L(\mathbf R^N), \quad \varepsilon\to+0, $$
for some measurable bounded function $f$. On the basis of this result the set of points of summability of a multiple Fourier series by methods of Abel, Riesz, and Picard types is described.
Received: 01.06.1990
Bibliographic databases:
UDC: 517.5
MSC: Primary 42A24, 04A15; Secondary 42A20
Language: English
Original paper language: Russian
Citation: A. M. Diyachkov, “A description of the sets of Lebesque points and points of summability for a Fourier series”, Math. USSR-Sb., 74:1 (1993), 111–118
Citation in format AMSBIB
\Bibitem{Diy91}
\by A.~M.~Diyachkov
\paper A~description of the sets of Lebesque points and points of summability for a~Fourier series
\jour Math. USSR-Sb.
\yr 1993
\vol 74
\issue 1
\pages 111--118
\mathnet{http://mi.mathnet.ru//eng/sm1373}
\crossref{https://doi.org/10.1070/SM1993v074n01ABEH003338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1133575}
\zmath{https://zbmath.org/?q=an:0774.42008|0757.42004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..74..111D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KQ22500009}
Linking options:
  • https://www.mathnet.ru/eng/sm1373
  • https://doi.org/10.1070/SM1993v074n01ABEH003338
  • https://www.mathnet.ru/eng/sm/v182/i9/p1367
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:351
    Russian version PDF:132
    English version PDF:19
    References:46
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024