Loading [MathJax]/jax/output/SVG/config.js
Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1993, Volume 74, Issue 1, Pages 63–78
DOI: https://doi.org/10.1070/SM1993v074n01ABEH003335
(Mi sm1370)
 

This article is cited in 15 scientific papers (total in 16 papers)

On a property of the subdifferential

A. I. Subbotin

Institute of Mathematics and Mechanics, Ural Branch of the AS of USSR
References:
Abstract: Semicontinuous real functions are considered. The following property is established for the Dini directional semiderivative and the Dini semidifferential (the subdifferential). If at some point the semiderivative is positive in a convex cone of directions, then arbitrarily close to the point under consideration there exists a point at which the function is subdifferentiable and has a subgradient belonging to the positively dual cone. This result is used in the theory of the Hamilton–Jacobi equations to prove the equivalence of various types of definitions of generalized solutions.
Received: 08.02.1990
Bibliographic databases:
UDC: 519.7
MSC: Primary 26B05, 26A24; Secondary 49L25, 70H20, 90D25
Language: English
Original paper language: Russian
Citation: A. I. Subbotin, “On a property of the subdifferential”, Math. USSR-Sb., 74:1 (1993), 63–78
Citation in format AMSBIB
\Bibitem{Sub91}
\by A.~I.~Subbotin
\paper On a~property of the subdifferential
\jour Math. USSR-Sb.
\yr 1993
\vol 74
\issue 1
\pages 63--78
\mathnet{http://mi.mathnet.ru/eng/sm1370}
\crossref{https://doi.org/10.1070/SM1993v074n01ABEH003335}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1133572}
\zmath{https://zbmath.org/?q=an:0774.49006|0748.49003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..74...63S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993KQ22500006}
Linking options:
  • https://www.mathnet.ru/eng/sm1370
  • https://doi.org/10.1070/SM1993v074n01ABEH003335
  • https://www.mathnet.ru/eng/sm/v182/i9/p1315
  • This publication is cited in the following 16 articles:
    1. M. I. Gomoyunov, N. Yu. Lukoyanov, “Minimax solutions of Hamilton–Jacobi equations in dynamic optimization problems for hereditary systems”, Russian Math. Surveys, 79:2 (2024), 229–324  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    2. Dmitry V. Khlopin, “On two-sided unidirectional mean value inequality in a Fréchet smooth space”, Ural Math. J., 9:2 (2023), 132–140  mathnet  crossref
    3. Anton Plaksin, “Viscosity Solutions of Hamilton–Jacobi Equations for Neutral-Type Systems”, Appl Math Optim, 88:1 (2023)  crossref
    4. M.I. Gomoyunov, A.R. Plaksin, “Equivalence of minimax and viscosity solutions of path-dependent Hamilton–Jacobi equations”, Journal of Functional Analysis, 285:11 (2023), 110155  crossref
    5. A. G. Chentsov, “Differential Approach–Evasion Game: Alternative Solvability and the Construction of Relaxations”, Diff Equat, 57:8 (2021), 1088  crossref
    6. A. G. Chentsov, “Relaksatsii igrovoi zadachi sblizheniya, svyazannye s alternativoi v differentsialnoi igre sblizheniya-ukloneniya”, Vestnik rossiiskikh universitetov. Matematika, 25:130 (2020), 196–244  mathnet  crossref
    7. N. Yu. Lukoyanov, A. R. Plaksin, “Inequalities for subgradients of a value functional in differential games for time-delay systems”, Dokl. Math., 101:1 (2020), 76–79  mathnet  crossref  crossref  zmath  elib
    8. Anton Plaksin, “Minimax and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations for Time-Delay Systems”, J Optim Theory Appl, 187:1 (2020), 22  crossref
    9. “Andrey Izmailovich Subbotin”, Proc. Steklov Inst. Math. (Suppl.), 293, suppl. 1 (2016), 1–16  mathnet  crossref  mathscinet  isi  elib
    10. F. F. Nikitin, “Viscosity solutions and programmed iteration method for Isaacs equation”, Vestn. S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform. Prots. upr., 2014, no. 2, 84–92  mathnet
    11. Radulescu M., Clarke F., “The Multidirectional Mean Value Theorem in Banach Spaces”, Can. Math. Bul.-Bul. Can. Math., 40:1 (1997), 88–102  crossref  mathscinet  zmath  isi
    12. A. I. Subbotin, “Minimax solutions of first-order partial differential equations”, Russian Math. Surveys, 51:2 (1996), 283–313  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Martino Bardi, Sandra Bottacin, Maurizio Falcone, New Trends in Dynamic Games and Applications, 1995, 273  crossref
    14. Clarke F., Ledyaev Y., “Mean-Value Inequalities in Hilbert-Space”, Trans. Am. Math. Soc., 344:1 (1994), 307–324  crossref  mathscinet  zmath  isi
    15. F. H. Clarke, Yu. S. Ledyaev, “Mean value inequalities in Hilbert space”, Trans. Amer. Math. Soc., 344:1 (1994), 307  crossref
    16. Clarke F., Ledyaev Y., “New Finite-Difference Formulas”, Dokl. Akad. Nauk, 331:3 (1993), 275–277  mathnet  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:484
    Russian version PDF:141
    English version PDF:25
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025