Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 6, Pages 845–884
DOI: https://doi.org/10.1070/SM2005v196n06ABEH000903
(Mi sm1365)
 

This article is cited in 7 scientific papers (total in 7 papers)

Sets admitting connection by graphs of finite length

A. O. Ivanov, I. M. Nikonov, A. A. Tuzhilin

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: The aim of this paper is the description and study of the properties of the subsets $M$ of a metric space $\mathbb X$ that can be connected by a graph of finite length. We obtain a criterion describing these sets, find several geometric properties of them (in the case $\mathbb X=\mathbb R^n$), and derive a formula for calculating the length of a minimal spanning tree on $M\subset\mathbb X$ as the integral of a certain function constructed by $M$.
Received: 04.10.2004
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 6, Pages 71–110
DOI: https://doi.org/10.4213/sm1365
Bibliographic databases:
UDC: 514.774.8+519.176
MSC: Primary 05C10; Secondary 05C05, 05C35, 46B20, 57M15
Language: English
Original paper language: Russian
Citation: A. O. Ivanov, I. M. Nikonov, A. A. Tuzhilin, “Sets admitting connection by graphs of finite length”, Mat. Sb., 196:6 (2005), 71–110; Sb. Math., 196:6 (2005), 845–884
Citation in format AMSBIB
\Bibitem{IvaNikTuz05}
\by A.~O.~Ivanov, I.~M.~Nikonov, A.~A.~Tuzhilin
\paper Sets admitting connection by graphs of finite length
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 6
\pages 71--110
\mathnet{http://mi.mathnet.ru/sm1365}
\crossref{https://doi.org/10.4213/sm1365}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164552}
\zmath{https://zbmath.org/?q=an:1081.54024}
\elib{https://elibrary.ru/item.asp?id=9133014}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 6
\pages 845--884
\crossref{https://doi.org/10.1070/SM2005v196n06ABEH000903}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232539400010}
\elib{https://elibrary.ru/item.asp?id=18237672}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27344449585}
Linking options:
  • https://www.mathnet.ru/eng/sm1365
  • https://doi.org/10.1070/SM2005v196n06ABEH000903
  • https://www.mathnet.ru/eng/sm/v196/i6/p71
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:541
    Russian version PDF:238
    English version PDF:11
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024