Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 6, Pages 777–790
DOI: https://doi.org/10.1070/SM2005v196n06ABEH000900
(Mi sm1362)
 

This article is cited in 15 scientific papers (total in 15 papers)

Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems

P. Widemier

Fraunhofer Institute for High-Speed Dynamics Ernst-Mach-Institut
References:
Abstract: The trace problem on the hypersurface $y_n=0$ is investigated for a function $u=u(y,t)\in L_q(0,T;W_{\underline p}^{\underline m}(\mathbb R_+^n))$ with $\partial_tu\in L_q(0,T; L_{\underline p}(\mathbb R_+^n))$, that is, Sobolev spaces with mixed Lebesgue norm $L_{\underline p,q}(\mathbb R^n_+\times(0,T)) =L_q(0,T;L_{\underline p}(\mathbb R_+^n))$ are considered; here $\underline p=(p_1,\dots,p_n)$ is a vector and $\mathbb R^n_+=\mathbb R^{n-1}\times (0,\infty)$. Such function spaces are useful in the context of parabolic equations. They allow, in particular, different exponents of summability in space and time. It is shown that the sharp regularity of the trace in the time variable is characterized by the Lizorkin–Triebel space $F_{q,p_n}^{1-1/(p_nm_n)}(0,T;L_{\widetilde{\underline p}}(\mathbb R^{n-1}))$, $\underline p=(\widetilde{\underline p},p_n)$. A similar result is established for first order spatial derivatives of $u$. These results allow one to determine the exact spaces for the data in the inhomogeneous Dirichlet and Neumann problems for parabolic equations of the second order if the solution is in the space $L_q(0,T; W_p^2(\Omega))\cap W_q^1(0,T;L_p(\Omega))$ with $p\leqslant q$.
Received: 02.08.2000 and 22.07.2002
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 6, Pages 3–16
DOI: https://doi.org/10.4213/sm1362
Bibliographic databases:
UDC: 517.95
MSC: 46E35, 46E40
Language: English
Original paper language: Russian
Citation: P. Widemier, “Vector-valued Lizorkin–Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems”, Mat. Sb., 196:6 (2005), 3–16; Sb. Math., 196:6 (2005), 777–790
Citation in format AMSBIB
\Bibitem{Wid05}
\by P.~Widemier
\paper Vector-valued Lizorkin--Triebel spaces and sharp trace theory for functions in Sobolev spaces with mixed $L_p$-norm for parabolic problems
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 6
\pages 3--16
\mathnet{http://mi.mathnet.ru/sm1362}
\crossref{https://doi.org/10.4213/sm1362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2164549}
\zmath{https://zbmath.org/?q=an:1092.46025}
\elib{https://elibrary.ru/item.asp?id=9133011}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 6
\pages 777--790
\crossref{https://doi.org/10.1070/SM2005v196n06ABEH000900}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232539400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27344434699}
Linking options:
  • https://www.mathnet.ru/eng/sm1362
  • https://doi.org/10.1070/SM2005v196n06ABEH000900
  • https://www.mathnet.ru/eng/sm/v196/i6/p3
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:645
    Russian version PDF:226
    English version PDF:18
    References:83
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024