Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 5, Pages 673–702
DOI: https://doi.org/10.1070/SM2005v196n05ABEH000896
(Mi sm1357)
 

This article is cited in 6 scientific papers (total in 6 papers)

Deficiency indices of a one-term symmetric differential operator of even order degenerate in the interior of an interval

Yu. B. Orochko

Moscow State Institute of Electronics and Mathematics
References:
Abstract: Let $a(x)\in C^\infty[-h,h]$, $h>0$, be a real function such that $a(x)\ne 0$ for $x\in[-h,h]$. Consider the differential expression $s_p[f]=(-1)^n(x^pa(x)f^{(n)})^{(n)}$ of arbitrary order $2n\geqslant 2$, which depends on the positive integer $p$ and is degenerate for $x=0$. Let $H_p$ be the real symmetric operator in $L^2(-h,h)$ corresponding to $s_p[f]$ and let $\operatorname{Def}H_p$ be its deficiency index in the upper (or lower) half-plane. The proof of the formula $\operatorname{Def}H_p=2n+p$, $1\leqslant p\leqslant n$, is presented. It complements the formulae $\operatorname{Def}H_p=2n$ for $p\geqslant 2n$ and $\operatorname{Def}H_p=4n-p$ for $p=2n-2,2n-1$ obtained by the same author before.
Received: 17.08.2004
Bibliographic databases:
UDC: 517.98
MSC: Primary 47E05; Secondary 34L99
Language: English
Original paper language: Russian
Citation: Yu. B. Orochko, “Deficiency indices of a one-term symmetric differential operator of even order degenerate in the interior of an interval”, Sb. Math., 196:5 (2005), 673–702
Citation in format AMSBIB
\Bibitem{Oro05}
\by Yu.~B.~Orochko
\paper Deficiency indices of a~one-term symmetric differential operator of even order degenerate in the interior of an interval
\jour Sb. Math.
\yr 2005
\vol 196
\issue 5
\pages 673--702
\mathnet{http://mi.mathnet.ru//eng/sm1357}
\crossref{https://doi.org/10.1070/SM2005v196n05ABEH000896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2154782}
\zmath{https://zbmath.org/?q=an:1093.47046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000232539400003}
\elib{https://elibrary.ru/item.asp?id=9135691}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-27344436939}
Linking options:
  • https://www.mathnet.ru/eng/sm1357
  • https://doi.org/10.1070/SM2005v196n05ABEH000896
  • https://www.mathnet.ru/eng/sm/v196/i5/p53
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:479
    Russian version PDF:219
    English version PDF:28
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024