Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 73, Issue 1, Pages 49–66
DOI: https://doi.org/10.1070/SM1992v073n01ABEH002534
(Mi sm1316)
 

This article is cited in 3 scientific papers (total in 3 papers)

Nontrivial expansions of zero in absolutely representing systems. Application to convolution operators

Yu. F. Korobeinik
References:
Abstract: By using a general representation of nontrivial expansions of zero in absolutely representing systems of the form $\{E_\rho(\lambda_kz)\}_{k=1}^\infty$, where $\rho>0$, $E_\rho(z)=\sum\limits_{n=0}^\infty\dfrac{z^n}{\Gamma(1+\frac n\rho)}$ is the Mittag-Leffler function, and $(\lambda_k)_{k=1}^\infty$ are complex numbers, the author obtains a number of results in the theory of $\rho$-convolution operators in spaces of functions that are analytic in $\rho$-convex domains (a description of the general solution of a homogeneous $\rho$-convolution equation and of systems of such equations, a topological description of the kernel of a $\rho$-convolution operator, the construction of principal solutions, and a criterion for factorization).
Received: 06.12.1989
Bibliographic databases:
UDC: 517.983
MSC: Primary 30D05, 34A20, 34A35, 44A35, 45E10; Secondary 32A15, 39B32
Language: English
Original paper language: Russian
Citation: Yu. F. Korobeinik, “Nontrivial expansions of zero in absolutely representing systems. Application to convolution operators”, Math. USSR-Sb., 73:1 (1992), 49–66
Citation in format AMSBIB
\Bibitem{Kor91}
\by Yu.~F.~Korobeinik
\paper Nontrivial expansions of zero in absolutely representing systems. Application to convolution operators
\jour Math. USSR-Sb.
\yr 1992
\vol 73
\issue 1
\pages 49--66
\mathnet{http://mi.mathnet.ru//eng/sm1316}
\crossref{https://doi.org/10.1070/SM1992v073n01ABEH002534}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1124102}
\zmath{https://zbmath.org/?q=an:0782.47009|0763.47004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..73...49K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992KA53500004}
Linking options:
  • https://www.mathnet.ru/eng/sm1316
  • https://doi.org/10.1070/SM1992v073n01ABEH002534
  • https://www.mathnet.ru/eng/sm/v182/i5/p661
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1991 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025