Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 3, Pages 395–422
DOI: https://doi.org/10.1070/SM2005v196n03ABEH000885
(Mi sm1277)
 

Characterization of the best polynomial approximation with a sign-sensitive weight to a continuous function

A.-R. K. Ramazanov

Daghestan State University
References:
Abstract: Necessary and sufficient conditions for the best polynomial approximation with an arbitrary and, generally speaking, unbounded sign-sensitive weight to a continuous function are obtained; the components of the weight can also take infinite values, therefore the conditions obtained cover, in particular, approximation with interpolation at fixed points and one-sided approximation; in the case of the weight with components equal to 1 one arrives at Chebyshev's classical alternation theorem.
Received: 29.06.2003 and 12.04.2004
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 3, Pages 89–118
DOI: https://doi.org/10.4213/sm1277
Bibliographic databases:
UDC: 517.5
MSC: Primary 41A10, 41A29; Secondary 41A65
Language: English
Original paper language: Russian
Citation: A. K. Ramazanov, “Characterization of the best polynomial approximation with a sign-sensitive weight to a continuous function”, Mat. Sb., 196:3 (2005), 89–118; Sb. Math., 196:3 (2005), 395–422
Citation in format AMSBIB
\Bibitem{Ram05}
\by A.~K.~Ramazanov
\paper Characterization of the best polynomial approximation with a sign-sensitive weight to a~continuous function
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 3
\pages 89--118
\mathnet{http://mi.mathnet.ru/sm1277}
\crossref{https://doi.org/10.4213/sm1277}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144277}
\zmath{https://zbmath.org/?q=an:1077.41004}
\elib{https://elibrary.ru/item.asp?id=9135680}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 3
\pages 395--422
\crossref{https://doi.org/10.1070/SM2005v196n03ABEH000885}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230563300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-22544466963}
Linking options:
  • https://www.mathnet.ru/eng/sm1277
  • https://doi.org/10.1070/SM2005v196n03ABEH000885
  • https://www.mathnet.ru/eng/sm/v196/i3/p89
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:397
    Russian version PDF:212
    English version PDF:9
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024