Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 1, Pages 115–146
DOI: https://doi.org/10.1070/SM2005v196n01ABEH000874
(Mi sm1263)
 

This article is cited in 25 scientific papers (total in 25 papers)

The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs

A. M. Raigorodskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: This paper is devoted to the classical Erdős–Hadwiger problem in combinatorial geometry. This problem of finding the minimum number of colours sufficient for colouring all points in the Euclidean space $\mathbb R^n$ such that points lying at distance 1 are painted distinct colours, is studied in one of the most important special cases relating to colouring of finite geometric graphs. Several new approaches to lower bounds for the chromatic numbers of such graphs are put forward. In a very broad class of cases these approaches enable one to obtain a considerable improvement over and generalization of all previously known results of this kind.
Received: 23.09.2003
Bibliographic databases:
UDC: 519.174 + 514.172.45
MSC: Primary 05C15, 52C10; Secondary 51M99
Language: English
Original paper language: Russian
Citation: A. M. Raigorodskii, “The Erdős–Hadwiger problem and the chromatic numbers of finite geometric graphs”, Sb. Math., 196:1 (2005), 115–146
Citation in format AMSBIB
\Bibitem{Rai05}
\by A.~M.~Raigorodskii
\paper The Erd\H os--Hadwiger problem and the chromatic numbers of finite geometric graphs
\jour Sb. Math.
\yr 2005
\vol 196
\issue 1
\pages 115--146
\mathnet{http://mi.mathnet.ru//eng/sm1263}
\crossref{https://doi.org/10.1070/SM2005v196n01ABEH000874}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141326}
\zmath{https://zbmath.org/?q=an:1070.05044}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229078800005}
\elib{https://elibrary.ru/item.asp?id=9135669}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18944367235}
Linking options:
  • https://www.mathnet.ru/eng/sm1263
  • https://doi.org/10.1070/SM2005v196n01ABEH000874
  • https://www.mathnet.ru/eng/sm/v196/i1/p123
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:947
    Russian version PDF:333
    English version PDF:29
    References:77
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024