Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2005, Volume 196, Issue 1, Pages 29–61
DOI: https://doi.org/10.1070/SM2005v196n01ABEH000871
(Mi sm1260)
 

This article is cited in 20 scientific papers (total in 20 papers)

Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations

A. A. Ilyin

M. V. Keldysh Institute for Applied Mathematics, Russian Academy of Sciences
References:
Abstract: Integral inequalities of Lieb–Thirring type and their generalizations are proved. All the corresponding constants are given in explicit form. Special attention is devoted to applications to the attractors of the two-dimensional Navier–Stokes equations. In particular, an explicit two-sided estimate of the attractor dimension is established for the Kolmogorov problem on the two-dimensional elongated torus.
Received: 02.02.2004
Russian version:
Matematicheskii Sbornik, 2005, Volume 196, Number 1, Pages 33–66
DOI: https://doi.org/10.4213/sm1260
Bibliographic databases:
UDC: 517.9
MSC: 26D10, 35Q10
Language: English
Original paper language: Russian
Citation: A. A. Ilyin, “Lieb–Thirring integral inequalities and their applications to attractors of the Navier–Stokes equations”, Mat. Sb., 196:1 (2005), 33–66; Sb. Math., 196:1 (2005), 29–61
Citation in format AMSBIB
\Bibitem{Ily05}
\by A.~A.~Ilyin
\paper Lieb--Thirring integral inequalities and their applications to attractors of the Navier--Stokes equations
\jour Mat. Sb.
\yr 2005
\vol 196
\issue 1
\pages 33--66
\mathnet{http://mi.mathnet.ru/sm1260}
\crossref{https://doi.org/10.4213/sm1260}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141323}
\zmath{https://zbmath.org/?q=an:1083.35093}
\elib{https://elibrary.ru/item.asp?id=9135666}
\transl
\jour Sb. Math.
\yr 2005
\vol 196
\issue 1
\pages 29--61
\crossref{https://doi.org/10.1070/SM2005v196n01ABEH000871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000229078800002}
\elib{https://elibrary.ru/item.asp?id=14660666}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-18944385924}
Linking options:
  • https://www.mathnet.ru/eng/sm1260
  • https://doi.org/10.1070/SM2005v196n01ABEH000871
  • https://www.mathnet.ru/eng/sm/v196/i1/p33
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:675
    Russian version PDF:320
    English version PDF:22
    References:74
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024