Abstract:
In a bounded domain Ω⊂Rn with smooth boundary, a matrix elliptic differential operator A is considered. It is assumed that the eigenvalues of the symbol of A lie on the positive semiaxis R+ and outside the angle
Φ={z:|argz|⩽φ}, φ∈(0,π).
Citation:
K. Kh. Boimatov, A. G. Kostyuchenko, “Spectral asymptotics of nonselfadjoint elliptic systems of differential operators on bounded domains”, Math. USSR-Sb., 71:2 (1992), 517–531
\Bibitem{BoiKos90}
\by K.~Kh.~Boimatov, A.~G.~Kostyuchenko
\paper Spectral asymptotics of nonselfadjoint elliptic systems of differential operators on bounded domains
\jour Math. USSR-Sb.
\yr 1992
\vol 71
\issue 2
\pages 517--531
\mathnet{http://mi.mathnet.ru/eng/sm1254}
\crossref{https://doi.org/10.1070/SM1992v071n02ABEH002135}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1099521}
\zmath{https://zbmath.org/?q=an:0776.35041|0733.35085}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..71..517B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992HU58600016}
Linking options:
https://www.mathnet.ru/eng/sm1254
https://doi.org/10.1070/SM1992v071n02ABEH002135
https://www.mathnet.ru/eng/sm/v181/i12/p1678
This publication is cited in the following 16 articles:
M. G. Gadoev, S. A. Iskhokov, “Spectral properties of degenerate elliptic operators with matrix coefficients”, Ufa Math. J., 5:4 (2013), 37–48
Lakshtanov E., Vainberg B., “Bounds on Positive Interior Transmission Eigenvalues”, Inverse Probl., 28:10 (2012), 105005
M. G. Gadoev, “Spektralnaya asimptotika nesamosopryazhennykh vyrozhdayuschikhsya ellipticheskikh operatorov s singulyarnymi matrichnymi koeffitsientami na otrezke”, Ufimsk. matem. zhurn., 3:3 (2011), 26–54
M. S. Agranovich, V. M. Buchstaber, R. S. Ismagilov, B. S. Kashin, B. S. Mityagin, S. P. Novikov, V. A. Sadovnichii, A. G. Sergeev, Ya. G. Sinai, A. A. Shkalikov, “Anatolii Gordeevich Kostyuchenko (obituary)”, Russian Math. Surveys, 65:4 (2010), 767–780
Kostyuchenko A.G., “Spectral asymptotics of a nonself-adjoint elliptic differential operator with an indefinite weight function”, Differ. Equ., 45:4 (2009), 549–557
M. G. Gadoev, “Asymptotics of the spectrum of second-order nonselfadjoint degenerate elliptic differential operators on an interval”, J. Appl. Industr. Math., 2:1 (2008), 57–67
V. V. Pod'yapol'skii, “Completeness of the Root Function System of a Nonlocal Problem in Lp”, Math. Notes, 71:6 (2002), 804–814
Boimatov K., “On Spectral Asymptotics and Abel Summability of Series Over Systems of Root Vector-Functions of Nonsmooth Elliptic Differential Operators Far From Self-Adjoint”, Dokl. Math., 61:3 (2000), 376–379
A. Sameripour, K. Seddighi, “Distribution of eigenvalues of nonself-adjoint elliptic systems degenerate on the domain boundary”, Math. Notes, 61:3 (1997), 379–384
Boimatov K., Seddighi K., “Some Spectral Properties of Ordinary Differential Operators Associated with Noncoercive Forms”, Dokl. Akad. Nauk, 352:4 (1997), 439–442
K. Kh. Boimatov, “Some Spectral Properties of Matrix Differential Operators Far from Being Self-Adjoint”, Funct. Anal. Appl., 29:3 (1995), 191–193
Boimatov K., “Some Asymptotical Formulas for the Elliptic Operations in R(N), That Are Far From Selfadjointness”, Dokl. Akad. Nauk, 344:6 (1995), 730–735
Boimatov K., “Spectral Asymptotic of Nonself-Adjoint Degenerate Elliptic-Systems of Differential-Operators”, Dokl. Akad. Nauk, 330:5 (1993), 533–538
M. S. Agranovich, “On modules of eigenvalues for non-self-adjoint agmon–Douglis–Nirenberg elliptic boundary problems with a parameter”, Funct. Anal. Appl., 26:2 (1992), 116–119
Boimatov K., “Spectral Asymptotics of Linear and Nonlinear Pencils of Douglis-Nirenberg Elliptic Pseudodifferential-Operators”, 322, no. 3, 1992, 441–445
K. Kh. Boimatov, “The spectral asymptotics of pseudodifferential systems elliptic in the sense of Douglis and Nirenberg”, Russian Math. Surveys, 46:5 (1991), 183–184