Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1992, Volume 71, Issue 2, Pages 331–353
DOI: https://doi.org/10.1070/SM1992v071n02ABEH002130
(Mi sm1241)
 

This article is cited in 17 scientific papers (total in 17 papers)

On uniform stabilization of solutions of the first mixed problem for a parabolic equation

F. Kh. Mukminov
References:
Abstract: The first mixed problem with a homogeneous boundary condition is considered for a linear parabolic equation of second order. It is assumed that the unbounded domain $\Omega$ satisfies the following condition: there exists a positive constant $\theta$ such that for any point $x$ of the boundary $\partial\Omega$
$$ \operatorname{mes}(\{y\colon|x-y|<r\}\setminus\Omega)\geqslant\theta r^n, \quad r>0. $$
For a certain class of initial functions $\varphi$, which includes all bounded functions, the following condition is a necessary and sufficient condition for uniform stabilization of the solution to zero: $\displaystyle r^{-n}\int_{|x-y|<r}\varphi (y)\,dy\to0$ as $r\to\infty$ uniformly with respect to all $x$ in $\Omega$ such that $\operatorname{dist}(x,\partial\Omega)\geqslant r+1$.
The proof of the stabilization condition is based on an estimate of the Green function that takes account of its decay near the boundary.
Received: 10.05.1990
Russian version:
Matematicheskii Sbornik, 1990, Volume 181, Number 11, Pages 1486–1509
Bibliographic databases:
UDC: 517.9
MSC: 35K20, 35B40
Language: English
Original paper language: Russian
Citation: F. Kh. Mukminov, “On uniform stabilization of solutions of the first mixed problem for a parabolic equation”, Mat. Sb., 181:11 (1990), 1486–1509; Math. USSR-Sb., 71:2 (1992), 331–353
Citation in format AMSBIB
\Bibitem{Muk90}
\by F.~Kh.~Mukminov
\paper On uniform stabilization of solutions of the first mixed problem for a~parabolic equation
\jour Mat. Sb.
\yr 1990
\vol 181
\issue 11
\pages 1486--1509
\mathnet{http://mi.mathnet.ru/sm1241}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1090912}
\zmath{https://zbmath.org/?q=an:0776.35003|0723.35010}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1992SbMat..71..331M}
\transl
\jour Math. USSR-Sb.
\yr 1992
\vol 71
\issue 2
\pages 331--353
\crossref{https://doi.org/10.1070/SM1992v071n02ABEH002130}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1992HU58600005}
Linking options:
  • https://www.mathnet.ru/eng/sm1241
  • https://doi.org/10.1070/SM1992v071n02ABEH002130
  • https://www.mathnet.ru/eng/sm/v181/i11/p1486
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:528
    Russian version PDF:120
    English version PDF:22
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024