Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 70, Issue 2, Pages 355–366
DOI: https://doi.org/10.1070/SM1991v070n02ABEH001383
(Mi sm1201)
 

This article is cited in 5 scientific papers (total in 5 papers)

Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions

D. A. Korotkin

Leningrad Institute of Aviation Instrumentation
References:
Abstract: An extensive new class of solutions is obtained for the $SU(1,1)$ and $SU(2)$ duality equations in terms of the Riemann $\theta$-functions for a Riemann surface depending on the dynamical variables. The dynamics in the resulting solutions is thus determined by the motion of the surface in the moduli manifold. The axisymmetric stationary case is discussed, for which the solutions reduce to solutions of the vacuum Einstein equations. In the degenerate case, the class of solutions is believed to include all known solutions of the instanton and monopole type.
Received: 25.03.1989
Russian version:
Matematicheskii Sbornik, 1990, Volume 181, Number 7, Pages 923–933
Bibliographic databases:
UDC: 517.43
MSC: Primary 81E13; Secondary 35Q20, 83C05
Language: English
Original paper language: Russian
Citation: D. A. Korotkin, “Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions”, Mat. Sb., 181:7 (1990), 923–933; Math. USSR-Sb., 70:2 (1991), 355–366
Citation in format AMSBIB
\Bibitem{Kor90}
\by D.~A.~Korotkin
\paper Finite-gap solutions of self-duality equations for $SU(1,1)$ and $SU(2)$ groups and their axisymmetric stationary reductions
\jour Mat. Sb.
\yr 1990
\vol 181
\issue 7
\pages 923--933
\mathnet{http://mi.mathnet.ru/sm1201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1070487}
\zmath{https://zbmath.org/?q=an:0759.35049|0705.35051}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..70..355K}
\transl
\jour Math. USSR-Sb.
\yr 1991
\vol 70
\issue 2
\pages 355--366
\crossref{https://doi.org/10.1070/SM1991v070n02ABEH001383}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GQ42500003}
Linking options:
  • https://www.mathnet.ru/eng/sm1201
  • https://doi.org/10.1070/SM1991v070n02ABEH001383
  • https://www.mathnet.ru/eng/sm/v181/i7/p923
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:458
    Russian version PDF:117
    English version PDF:14
    References:73
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024