Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 69, Issue 2, Pages 559–579
DOI: https://doi.org/10.1070/SM1991v069n02ABEH002116
(Mi sm1182)
 

This article is cited in 25 scientific papers (total in 25 papers)

The Navier–Stokes and Euler equations on two-dimensional closed manifolds

A. A. Ilyin

Hydrometeorological Centre of USSR
References:
Abstract: The Navier–Stokes equations
$$ \partial_tu+\nabla_uu+\nu\Lambda u=-\nabla p+f, \qquad \operatorname{div}u=0 $$
are considered on a two-dimensional closed manifold $M$ imbedded in $R^3$. Theorems on existence and uniqueness of generalized solutions of steady-state and time-dependent problems are proved. Unique solvability of the Euler equations $(\nu=0)$ is proved by passing to the limit as $\nu\to+0$. The existence of a maximal attractor for the Navier–Stokes system on $M$ is proved, and for the case where the manifold $M$ is the sphere $S^2$ an estimate for the Hausdorff dimension of the attractor is obtained:
$$ \dim\mathscr A_{S^2}\leqslant c(\nu^{-8/3}\|f\|^{4/3}+\nu^{-2}\|f\|). $$
Received: 03.01.1989
Russian version:
Matematicheskii Sbornik, 1990, Volume 181, Number 4, Pages 521–539
Bibliographic databases:
MSC: Primary 76D05, 35Q10, 58G20; Secondary 86A10
Language: English
Original paper language: Russian
Citation: A. A. Ilyin, “The Navier–Stokes and Euler equations on two-dimensional closed manifolds”, Mat. Sb., 181:4 (1990), 521–539; Math. USSR-Sb., 69:2 (1991), 559–579
Citation in format AMSBIB
\Bibitem{Ily90}
\by A.~A.~Ilyin
\paper The Navier--Stokes and Euler equations on two-dimensional closed manifolds
\jour Mat. Sb.
\yr 1990
\vol 181
\issue 4
\pages 521--539
\mathnet{http://mi.mathnet.ru/sm1182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1055527}
\zmath{https://zbmath.org/?q=an:0713.35074|0724.35088}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..69..559I}
\transl
\jour Math. USSR-Sb.
\yr 1991
\vol 69
\issue 2
\pages 559--579
\crossref{https://doi.org/10.1070/SM1991v069n02ABEH002116}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991GB41500015}
Linking options:
  • https://www.mathnet.ru/eng/sm1182
  • https://doi.org/10.1070/SM1991v069n02ABEH002116
  • https://www.mathnet.ru/eng/sm/v181/i4/p521
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1161
    Russian version PDF:646
    English version PDF:22
    References:98
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024