|
Existence of untrivial compact Tchebycheff sets in the spaces $L_\varphi$
D.-A. G. Kamuntavichius Vilnius University
Abstract:
It is proved that if $(T,\Omega,\mu)$ is a nonatomic measure space and $\varphi$ an even function nondecreasing on $[0,\infty)$ and such that $\varphi(0)=0$, $\varphi(u)>0$ for $u>0$, and $\varphi(u_1+u_2)<\varphi(u_1)+\varphi(u_2)$ for all $u_1,u_2>0$, then the space $L_\varphi(T,\Omega,\mu)$ does not contain boundedly compact Tchebycheff sets with more than one point.
Received: 25.11.1988
Citation:
D. G. Kamuntavichius, “Existence of untrivial compact Tchebycheff sets in the spaces $L_\varphi$”, Mat. Sb., 181:3 (1990), 402–415; Math. USSR-Sb., 69:2 (1991), 431–444
Linking options:
https://www.mathnet.ru/eng/sm1174https://doi.org/10.1070/SM1991v069n02ABEH002114 https://www.mathnet.ru/eng/sm/v181/i3/p402
|
Statistics & downloads: |
Abstract page: | 324 | Russian version PDF: | 91 | English version PDF: | 7 | References: | 85 | First page: | 1 |
|