Mathematics of the USSR-Sbornik
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Mathematics of the USSR-Sbornik, 1991, Volume 69, Issue 1, Pages 155–177
DOI: https://doi.org/10.1070/SM1991v069n01ABEH001234
(Mi sm1148)
 

This article is cited in 18 scientific papers (total in 20 papers)

On the negative spectrum of an elliptic operator

Yu. V. Egorov, V. A. Kondrat'ev

M. V. Lomonosov Moscow State University
References:
Abstract: New estimates are given for the number of points in the negative spectrum for an elliptic operator or arbitrary order. These estimates generalize and refine the well-known results of Rozenblyum, Lieb, Cwikel, the authors, and others. The proofs have a simple geometric character, and are based on uncomplicated dimensionless imbedding theorems. Also given are results for degenerate elliptic operators, for operators in a domain that contracts or expands in a definite way at infinity, and so on. Theorem 10 gives conditions under which the essential spectrum of an operator contains infinitely many points.
Received: 03.03.1989
Russian version:
Matematicheskii Sbornik, 1990, Volume 181, Number 2, Pages 147–166
Bibliographic databases:
UDC: 517.9
MSC: Primary 35J45, 35P05; Secondary 35J70
Language: English
Original paper language: Russian
Citation: Yu. V. Egorov, V. A. Kondrat'ev, “On the negative spectrum of an elliptic operator”, Mat. Sb., 181:2 (1990), 147–166; Math. USSR-Sb., 69:1 (1991), 155–177
Citation in format AMSBIB
\Bibitem{EgoKon90}
\by Yu.~V.~Egorov, V.~A.~Kondrat'ev
\paper On the negative spectrum of an elliptic operator
\jour Mat. Sb.
\yr 1990
\vol 181
\issue 2
\pages 147--166
\mathnet{http://mi.mathnet.ru/sm1148}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1046596}
\zmath{https://zbmath.org/?q=an:0734.35063}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1991SbMat..69..155E}
\transl
\jour Math. USSR-Sb.
\yr 1991
\vol 69
\issue 1
\pages 155--177
\crossref{https://doi.org/10.1070/SM1991v069n01ABEH001234}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991FM83100010}
Linking options:
  • https://www.mathnet.ru/eng/sm1148
  • https://doi.org/10.1070/SM1991v069n01ABEH001234
  • https://www.mathnet.ru/eng/sm/v181/i2/p147
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1989–1990 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:482
    Russian version PDF:205
    English version PDF:21
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024