Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 5, Pages 633–680
DOI: https://doi.org/10.1070/SM2006v197n05ABEH003773
(Mi sm1135)
 

This article is cited in 7 scientific papers (total in 7 papers)

Variational principles for the spectral radius

A. B. Antonevicha, K. Zajkowski

a Belarusian State University
References:
Abstract: The spectral radius of a functional operator with positive coefficients generated by a set of maps (a dynamical system) is shown to be a logarithmically convex functional of the logarithms of the coefficients. This yields the following variational principle: the logarithm of the spectral radius is the Legendre transform of a convex functional $T$ defined on a set of vector-valued probability measures and depending only on the original dynamical system. A combinatorial construction of the functional $T$ by means of the random walk process corresponding to the dynamical system is presented in the subexponential case. Examples of the explicit calculation of the functional $T$ and the spectral radius are presented.
Bibliography: 28 titles.
Received: 18.08.2005
Bibliographic databases:
UDC: 517.983.23+517.984.5
MSC: Primary 47B38, 47A10; Secondary 47B33
Language: English
Original paper language: Russian
Citation: A. B. Antonevich, K. Zajkowski, “Variational principles for the spectral radius”, Sb. Math., 197:5 (2006), 633–680
Citation in format AMSBIB
\Bibitem{AntZaj06}
\by A.~B.~Antonevich, K.~Zajkowski
\paper Variational principles for the spectral radius
\jour Sb. Math.
\yr 2006
\vol 197
\issue 5
\pages 633--680
\mathnet{http://mi.mathnet.ru//eng/sm1135}
\crossref{https://doi.org/10.1070/SM2006v197n05ABEH003773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264327}
\zmath{https://zbmath.org/?q=an:1152.47025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240354900001}
\elib{https://elibrary.ru/item.asp?id=9200277}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748763908}
Linking options:
  • https://www.mathnet.ru/eng/sm1135
  • https://doi.org/10.1070/SM2006v197n05ABEH003773
  • https://www.mathnet.ru/eng/sm/v197/i5/p3
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024