Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 10, Pages 1529–1558
DOI: https://doi.org/10.1070/SM2006v197n10ABEH003811
(Mi sm1126)
 

This article is cited in 63 scientific papers (total in 63 papers)

Dyadic wavelets and refinable functions on a half-line

V. Yu. Protasova, Yu. A. Farkovb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow State Geological Prospecting Academy
References:
Abstract: For an arbitrary positive integer $n$ refinable functions on the positive half-line $\mathbb R_+$ are defined, with masks that are Walsh polynomials of order $2^n-1$. The Strang-Fix conditions, the partition of unity property, the linear independence, the stability, and the orthonormality of integer translates of a solution of the corresponding refinement equations are studied. Necessary and sufficient conditions ensuring that these solutions generate multiresolution analysis in $L^2(\mathbb R_+)$ are deduced. This characterizes all systems of dyadic compactly supported wavelets on $\mathbb R_+$ and gives one an algorithm for the construction of such systems. A method for finding estimates for the exponents of regularity of refinable functions is presented, which leads to sharp estimates in the case of small $n$. In particular, all the dyadic entire compactly supported refinable functions on $\mathbb R_+$ are characterized. It is shown that a refinable function is either dyadic entire or has a finite exponent of regularity, which, moreover, has effective upper estimates.
Bibliography: 13 items.
Received: 08.08.2005 and 26.07.2006
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 10, Pages 129–160
DOI: https://doi.org/10.4213/sm1126
Bibliographic databases:
UDC: 517.518.3+517.965
MSC: Primary 42C40; Secondary 43A70
Language: English
Original paper language: Russian
Citation: V. Yu. Protasov, Yu. A. Farkov, “Dyadic wavelets and refinable functions on a half-line”, Mat. Sb., 197:10 (2006), 129–160; Sb. Math., 197:10 (2006), 1529–1558
Citation in format AMSBIB
\Bibitem{ProFar06}
\by V.~Yu.~Protasov, Yu.~A.~Farkov
\paper Dyadic wavelets and refinable functions on~a~half-line
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 10
\pages 129--160
\mathnet{http://mi.mathnet.ru/sm1126}
\crossref{https://doi.org/10.4213/sm1126}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2310119}
\zmath{https://zbmath.org/?q=an:05295405}
\elib{https://elibrary.ru/item.asp?id=9296534}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 10
\pages 1529--1558
\crossref{https://doi.org/10.1070/SM2006v197n10ABEH003811}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243495000015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846537568}
Linking options:
  • https://www.mathnet.ru/eng/sm1126
  • https://doi.org/10.1070/SM2006v197n10ABEH003811
  • https://www.mathnet.ru/eng/sm/v197/i10/p129
  • This publication is cited in the following 63 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:1262
    Russian version PDF:519
    English version PDF:18
    References:82
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024