Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2006, Volume 197, Issue 3, Pages 415–432
DOI: https://doi.org/10.1070/SM2006v197n03ABEH003764
(Mi sm1104)
 

Separation properties for closures of toric orbits

O. V. Chuvashova

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: A subset $X$ of a vector space $V$ is said to have the ‘separation property’ if it separates linear forms in the following sense: for each pair $(\alpha,\beta)$ of linearly independent forms on $V$ there exists a point $x\in X$ such that $\alpha(x)=0$ and $\beta(x)\ne0$; equivalently, each homogeneous hyperplane $H\subseteq V$ is linearly spanned by its intersection with $X$.
For orbit closures in representation spaces of an algebraic torus a criterion for the separation property is obtained. Strong and weak separation properties are also considered.
Bibliography: 7 titles.
Received: 18.10.2004 and 22.07.2005
Russian version:
Matematicheskii Sbornik, 2006, Volume 197, Number 3, Pages 117–134
DOI: https://doi.org/10.4213/sm1104
Bibliographic databases:
UDC: 512.745
MSC: 20G05, 14R30, 14L20
Language: English
Original paper language: Russian
Citation: O. V. Chuvashova, “Separation properties for closures of toric orbits”, Mat. Sb., 197:3 (2006), 117–134; Sb. Math., 197:3 (2006), 415–432
Citation in format AMSBIB
\Bibitem{Chu06}
\by O.~V.~Chuvashova
\paper Separation properties for closures of toric orbits
\jour Mat. Sb.
\yr 2006
\vol 197
\issue 3
\pages 117--134
\mathnet{http://mi.mathnet.ru/sm1104}
\crossref{https://doi.org/10.4213/sm1104}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2264337}
\zmath{https://zbmath.org/?q=an:1134.14311}
\elib{https://elibrary.ru/item.asp?id=9188980}
\transl
\jour Sb. Math.
\yr 2006
\vol 197
\issue 3
\pages 415--432
\crossref{https://doi.org/10.1070/SM2006v197n03ABEH003764}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000239727500006}
\elib{https://elibrary.ru/item.asp?id=18102615}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747050424}
Linking options:
  • https://www.mathnet.ru/eng/sm1104
  • https://doi.org/10.1070/SM2006v197n03ABEH003764
  • https://www.mathnet.ru/eng/sm/v197/i3/p117
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:242
    English version PDF:13
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024