Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 2, Pages 237–257
DOI: https://doi.org/10.1070/SM1996v187n02ABEH000110
(Mi sm110)
 

This article is cited in 6 scientific papers (total in 6 papers)

The groups of knotted compact surfaces, and central extensions

Yu. V. Kuz'min

Moscow State University of Transportation
References:
Abstract: A homological characterization is given for groups admitting a presentation by means of defining relations of the form $x^{-1}_\alpha x_\beta x_\alpha =x_\gamma ^\varepsilon$ (the $x_*$ are generators, $\varepsilon =\pm 1$). The importance of such groups for geometry is connected with the fact that the finitely presented groups of this class are precisely the groups of knotted compact surfaces in $\mathbb R^4$.
Received: 22.06.1995
Bibliographic databases:
UDC: 512.04
MSC: Primary 57Q45, 20F05, 20J05; Secondary 57M25, 53A05, 20K35
Language: English
Original paper language: Russian
Citation: Yu. V. Kuz'min, “The groups of knotted compact surfaces, and central extensions”, Sb. Math., 187:2 (1996), 237–257
Citation in format AMSBIB
\Bibitem{Kuz96}
\by Yu.~V.~Kuz'min
\paper The groups of knotted compact surfaces, and central extensions
\jour Sb. Math.
\yr 1996
\vol 187
\issue 2
\pages 237--257
\mathnet{http://mi.mathnet.ru/eng/sm110}
\crossref{https://doi.org/10.1070/SM1996v187n02ABEH000110}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1392843}
\zmath{https://zbmath.org/?q=an:0871.57026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UW03900014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030306748}
Linking options:
  • https://www.mathnet.ru/eng/sm110
  • https://doi.org/10.1070/SM1996v187n02ABEH000110
  • https://www.mathnet.ru/eng/sm/v187/i2/p81
  • This publication is cited in the following 6 articles:
    1. Maxim Ivanov, “Non-abelian tensor product and circular orderability of groups”, Topology and its Applications, 2024, 109111  crossref
    2. Vik. S. Kulikov, “Alexander modules of irreducible $C$-groups”, Izv. Math., 72:2 (2008), 305–344  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. Vik. S. Kulikov, “Hurwitz curves”, Russian Math. Surveys, 62:6 (2007), 1043–1119  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    4. Yu. Kuzmin, “On solvable groups of knotted surfaces”, J Math Sci, 100:1 (2000), 1877  crossref
    5. V. S. Guba, M. V. Sapir, “On subgroups of R. Thompson's group $F$ and other diagram groups”, Sb. Math., 190:8 (1999), 1077–1130  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    6. Yu. S. Semenov, “Commutator subgroups of irreducible $\mathrm C$-group”, Sb. Math., 187:3 (1996), 403–412  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:380
    Russian version PDF:198
    English version PDF:35
    References:53
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025