Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 2, Pages 215–236
DOI: https://doi.org/10.1070/SM1996v187n02ABEH000109
(Mi sm109)
 

This article is cited in 10 scientific papers (total in 10 papers)

A free Lie algebra as a module over the full linear group

V. M. Zhuravlev

M. V. Lomonosov Moscow State University
References:
Abstract: In this paper we consider a tree Lie algebra over a field of characteristic zero. This algebra is a module over the full linear group, and the spaces of homogeneous elements are invariant under this action. We study the decomposition of the homogeneous spaces into irreducible components and calculate their multiplicities. One method for calculating these multiplicities involves their connection with the values of the irreducible characters of the symmetric group on conjugacy classes of elements corresponding to a product of independent cycles of the same length. In the second section we give an explicit formula for calculating such character values. This formula is analogous to the hook formula for the dimension of the irreducible modules of the symmetric group. In the second method for calculating multiplicities we make use of Witt's formula for the dimensions of the polyhomogeneous components of a free Lie algebra. The rest of this paper deal with relations between the Hilbert series of a free two-generator Lie algebra and the generating series of the multiplicities of the irreducible modules in this algebra.
Received: 12.07.1995
Russian version:
Matematicheskii Sbornik, 1996, Volume 187, Number 2, Pages 59–80
DOI: https://doi.org/10.4213/sm109
Bibliographic databases:
UDC: 512.5
MSC: 17B01, 17B05
Language: English
Original paper language: Russian
Citation: V. M. Zhuravlev, “A free Lie algebra as a module over the full linear group”, Sb. Math., 187:2 (1996), 215–236
Citation in format AMSBIB
\Bibitem{Zhu96}
\by V.~M.~Zhuravlev
\paper A free Lie algebra as a~module over the~full linear group
\jour Sb. Math.
\yr 1996
\vol 187
\issue 2
\pages 215--236
\mathnet{http://mi.mathnet.ru//eng/sm109}
\crossref{https://doi.org/10.1070/SM1996v187n02ABEH000109}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1392842}
\zmath{https://zbmath.org/?q=an:0873.17008}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UW03900013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030306763}
Linking options:
  • https://www.mathnet.ru/eng/sm109
  • https://doi.org/10.1070/SM1996v187n02ABEH000109
  • https://www.mathnet.ru/eng/sm/v187/i2/p59
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:465
    Russian version PDF:246
    English version PDF:17
    References:58
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024