Abstract:
The homology groups of the spaces of non-singular polynomial (of degree ⩽4) embeddings R1→Rn are calculated. General algebraic techniques of such calculations or spaces of polynomial knots of arbitrary degree are described.
\Bibitem{Vas96}
\by V.~A.~Vassiliev
\paper On spaces of polynomial knots
\jour Sb. Math.
\yr 1996
\vol 187
\issue 2
\pages 193--213
\mathnet{http://mi.mathnet.ru/eng/sm108}
\crossref{https://doi.org/10.1070/SM1996v187n02ABEH000108}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1392841}
\zmath{https://zbmath.org/?q=an:0871.57011}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UW03900012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030306752}
Linking options:
https://www.mathnet.ru/eng/sm108
https://doi.org/10.1070/SM1996v187n02ABEH000108
https://www.mathnet.ru/eng/sm/v187/i2/p37
This publication is cited in the following 5 articles:
Raundal H., “Topologies on Sets of Polynomial Knots and the Homotopy Types of the Respective Spaces”, Proc. Indian Acad. Sci.-Math. Sci., 131:1 (2021), 13
Raundal H., Mishra R., “Some spaces of polynomial knots”, Topology Appl., 218 (2017), 66–92
Mishra R., Raundal H., “Spaces of Polynomial Knots in Low Degree”, J. Knot Theory Ramifications, 24:14 (2015), 1550073
Rama Mishra, Hitesh Raundal, “Spaces of polynomial knots in low degree”, J. Knot Theory Ramifications, 24:14 (2015), 1550073