Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 1, Pages 141–158
DOI: https://doi.org/10.1070/SM1996v187n01ABEH000105
(Mi sm105)
 

This article is cited in 6 scientific papers (total in 6 papers)

Boundedness in $C[-1,1]$ of the de la Vallée-Poussin means for discrete Chebyshev–Fourier sums

I. I. Sharapudinov

Daghestan State University
References:
Abstract: Approximation properties of the de la Vallée-Poussin means $v_{m,n}=v_{m,n}(f)=v_{m,n}(f,x)=v_{m,n}(f,x,N)$ of discrete Chebyshev–Fourier sums in the Chebyshev polynomials forming an orthonormal system on the set $\Omega =\bigl \{-1+2j/(N-1)\bigr \}_{j=0}^{N-1}$ with respect to the weight $\rho (x)=2/N$ are considered. For $0<d \leqslant m/n \leqslant b$ and $n \leqslant a\sqrt N$ the existence of a constant $c=c(a,b,d)$ is established such that $\|v_{m,n}\| \leqslant c$, where $\|v_{m,n}\|$ is the norm of the operator $v_{m,n}$ in the space $C[-1,1]$. As a consequence, it is proved for an algebraic polinomial $p_n(x)$) of degree $n \leqslant a\sqrt N$ that if $\max \bigl \{|p_n(x)|:x \in \Omega \bigr \} \leqslant 1$, then the following estimate is valid: $\|p_n\|=\max \bigl \{|p_n(x)|:x\in [-1,1]\bigr \} \leqslant c(a)$.
Received: 01.06.1993 and 06.07.1994
Bibliographic databases:
UDC: 517.98
MSC: Primary 42C10; Secondary 33A65, 26C05
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Boundedness in $C[-1,1]$ of the de la Vallée-Poussin means for discrete Chebyshev–Fourier sums”, Sb. Math., 187:1 (1996), 141–158
Citation in format AMSBIB
\Bibitem{Sha96}
\by I.~I.~Sharapudinov
\paper Boundedness in $C[-1,1]$ of the~de~la~Vall\'ee-Poussin means for discrete Chebyshev--Fourier sums
\jour Sb. Math.
\yr 1996
\vol 187
\issue 1
\pages 141--158
\mathnet{http://mi.mathnet.ru//eng/sm105}
\crossref{https://doi.org/10.1070/SM1996v187n01ABEH000105}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1380209}
\zmath{https://zbmath.org/?q=an:0866.42017}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UW03900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030306750}
Linking options:
  • https://www.mathnet.ru/eng/sm105
  • https://doi.org/10.1070/SM1996v187n01ABEH000105
  • https://www.mathnet.ru/eng/sm/v187/i1/p143
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024