Russian Academy of Sciences. Sbornik. Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Sbornik. Mathematics, 1993, Volume 76, Issue 1, Pages 211–223
DOI: https://doi.org/10.1070/SM1993v076n01ABEH003409
(Mi sm1049)
 

On two-dimensional polynomial interpolation

A. A. Akopian, O. V. Gevorgyan, A. A. Sahakian
References:
Abstract: A tuple $\mathfrak{N}=\{n_1,\,n_k;\,n\}$ of positive integers with $\sum_{\nu=1}^k n_\nu(n_\nu+1)=(n+1)(n+2)$ is said to be regular if there exists a set $U=\{u_1,\,\dots,\,u_k\}\subset\mathbb{R}^2$ such that the Hermite interpolation problem $(\mathfrak{N},\,U)$ is regular, i.e., for arbitrary numbers $\lambda_{(i,j),\nu}$, $i+j<n_\nu$, $\nu=1,\dots,k$, there exists a unique polynomial $P(x,\,y)\in\pi_n(\mathbb{R}^2)$ such that
$$ {\partial^{i+j}\over\partial x^i\partial y^j}P(x,y)\big|_{u_\nu}=\lambda_{(i,j),\nu},\qquad i+j<n_\nu,\quad \nu=1,\dots,k. $$
In this paper an algorithm is obtained that completely describes the regular and singular tuples $\mathfrak{N}$ under the condition that $n_{10}=1$. In the case when only the derivatives of order $n_\nu$ are interpolated, necessary and sufficient conditions are obtained for an arbitrary tuple $\mathfrak{N}$ to be regular.
Received: 21.11.1990
Bibliographic databases:
UDC: 517.5
MSC: 41A05
Language: English
Original paper language: Russian
Citation: A. A. Akopian, O. V. Gevorgyan, A. A. Sahakian, “On two-dimensional polynomial interpolation”, Russian Acad. Sci. Sb. Math., 76:1 (1993), 211–223
Citation in format AMSBIB
\Bibitem{AkoGevSah92}
\by A.~A.~Akopian, O.~V.~Gevorgyan, A.~A.~Sahakian
\paper On two-dimensional polynomial interpolation
\jour Russian Acad. Sci. Sb. Math.
\yr 1993
\vol 76
\issue 1
\pages 211--223
\mathnet{http://mi.mathnet.ru//eng/sm1049}
\crossref{https://doi.org/10.1070/SM1993v076n01ABEH003409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1186781}
\zmath{https://zbmath.org/?q=an:0782.41001|0765.41001}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1993SbMat..76..211A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MD58900012}
Linking options:
  • https://www.mathnet.ru/eng/sm1049
  • https://doi.org/10.1070/SM1993v076n01ABEH003409
  • https://www.mathnet.ru/eng/sm/v183/i6/p111
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025