Abstract:
The main goal of this paper is the investigation of invariant lattices and the computation of their isometry groups when G=SL(2,q) and V is the Steinberg module.
\Bibitem{Bur93}
\by V.~P.~Burichenko
\paper Invariant lattices in the~Steinberg module and their isometry groups
\jour Russian Acad. Sci. Sb. Math.
\yr 1995
\vol 80
\issue 2
\pages 519--529
\mathnet{http://mi.mathnet.ru/eng/sm1036}
\crossref{https://doi.org/10.1070/SM1995v080n02ABEH003537}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1254809}
\zmath{https://zbmath.org/?q=an:0838.11051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995QR47400014}
Linking options:
https://www.mathnet.ru/eng/sm1036
https://doi.org/10.1070/SM1995v080n02ABEH003537
https://www.mathnet.ru/eng/sm/v184/i12/p145
This publication is cited in the following 4 articles:
F. Van Oystaeyen, A.E. Zalesski ǐ, “Finite Groups over Arithmetical Rings and Globally Irreducible Representations”, Journal of Algebra, 215:2 (1999), 418
K. S. Abdukhalikov, “Automorphism groups of invariant lattices in the Steinberg module of groups of Lie type of odd characteristic”, Sb. Math., 189:9 (1998), 1273–1294
K. S. Abdukhalikov, “Modular permutation representations of PSL(n,p)”, Sb. Math., 188:8 (1997), 1107–1117
Abdukhalikov K., “Invariant Hermitian Lattices in the Steinberg Module and their Isometry Groups”, Commun. Algebr., 25:8 (1997), 2607–2626