Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1996, Volume 187, Issue 1, Pages 93–110
DOI: https://doi.org/10.1070/SM1996v187n01ABEH000102
(Mi sm102)
 

This article is cited in 9 scientific papers (total in 9 papers)

Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis

O. E. Orel, S. Takahashi

M. V. Lomonosov Moscow State University
References:
Abstract: In an earlier paper Orel computed the trajectory (or orbital) invariant for the Goryachev–Chaplygin problem. She noted, however, that the investigation of this invariant is beset with insurmountable analytic difficulties. The present paper completes the construction of the trajectory invariant for the Goryachev–Chaplygin problem, as well as for the Lagrange problem, by the methods of computer analysis. Thus the orbital classification question as been solved for these problems. In the paper we also formulate conjectures relating to the Lagrange case, which can serve as a basis for further investigations in this area. The computational algorithms themselves are due to Takahashi.
Received: 20.06.1995
Bibliographic databases:
UDC: 513.944
MSC: 58F05, 70H05, 70E15
Language: English
Original paper language: Russian
Citation: O. E. Orel, S. Takahashi, “Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis”, Sb. Math., 187:1 (1996), 93–110
Citation in format AMSBIB
\Bibitem{OreTak96}
\by O.~E.~Orel, S.~Takahashi
\paper Orbital classification of the~integrable problems of Lagrange and Goryachev--Chaplygin by the~methods of computer analysis
\jour Sb. Math.
\yr 1996
\vol 187
\issue 1
\pages 93--110
\mathnet{http://mi.mathnet.ru/eng/sm102}
\crossref{https://doi.org/10.1070/SM1996v187n01ABEH000102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1380206}
\zmath{https://zbmath.org/?q=an:0868.58036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996UW03900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0030306742}
Linking options:
  • https://www.mathnet.ru/eng/sm102
  • https://doi.org/10.1070/SM1996v187n01ABEH000102
  • https://www.mathnet.ru/eng/sm/v187/i1/p95
  • This publication is cited in the following 9 articles:
    1. V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    2. Fokicheva V.V., Fomenko A.T., “Billiard Systems as the Models For the Rigid Body Dynamics”, Advances in Dynamical Systems and Control, Studies in Systems Decision and Control, 69, eds. Sadovnichiy V., Zgurovsky M., Springer Int Publishing Ag, 2016, 13–33  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    3. Fomenko A.T. Nikolaenko S.S., “The Chaplygin Case in Dynamics of a Rigid Body in Fluid Is Orbitally Equivalent To the Euler Case in Rigid Body Dynamics and To the Jacobi Problem About Geodesics on the Ellipsoid”, J. Geom. Phys., 87 (2015), 115–133  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    4. D. Bertrand, “Multiplicity and vanishing lemmas for differential and q-difference equations in the Siegel–Shidlovsky theory”, J Math Sci, 2012  crossref  mathscinet  scopus  scopus  scopus
    5. E. O. Kantonistova, “Integer lattices of the action variables for the generalized Lagrange case”, Moscow University Mathematics Bulletin, 67:1 (2012), 36–40  mathnet  crossref  mathscinet
    6. Korovina, NV, “The trajectory equivalence of two classical problems in rigid body dynamics”, Doklady Mathematics, 62:3 (2000), 345  zmath  isi  elib
    7. A. V. Bolsinov, A. T. Fomenko, Integrable Geodesic Flows on Two-Dimensional Surfaces, 2000, 287  crossref
    8. O. E. Orel, “A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem”, Sb. Math., 188:7 (1997), 1085–1105  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. A. V. Bolsinov, “Fomenko invariants in the theory of integrable Hamiltonian systems”, Russian Math. Surveys, 52:5 (1997), 997–1015  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:641
    Russian version PDF:254
    English version PDF:31
    References:83
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025