Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2024, Volume 215, Issue 6, Pages 743–754
DOI: https://doi.org/10.4213/sm10011e
(Mi sm10011)
 

Density of the sums of shifts of a single function in the $L_2^0$ space on a compact Abelian group

N. A. Dyuzhinaab

a Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia
b Moscow Center of Fundamental and Applied Mathematics, Moscow, Russia
References:
Abstract: Let $G$ be a nontrivial compact Abelian group. The following result is proved: a real-valued function on $G$ such that the sums of shifts of it are dense in the $L_{2}$-norm in the corresponding real space of mean zero functions exists if and only if the group $G$ is connected and has an infinite countable character group.
Bibliography: 13 titles.
Keywords: density, sums of shifts, compact groups, space $L_{2}$.
Funding agency Grant number
Foundation for the Advancement of Theoretical Physics and Mathematics BASIS 20-8-3-5-1
This research was carried out with the support of the Theoretical Physics and Mathematics Advancement Foundation “BASIS” (grant no. 20-8-3-5-1).
Received: 08.10.2023
Russian version:
Matematicheskii Sbornik, 2024, Volume 215, Number 6, Pages 29–40
DOI: https://doi.org/10.4213/sm10011
Bibliographic databases:
Document Type: Article
MSC: 41A46, 43A15
Language: English
Original paper language: Russian

§ 1. Introduction

In the real space $L^{0}_{p}(\mathbb{T})$ of mean zero functions on the circle $\mathbb{T}$ that are integrable to power $p$, $1\leqslant p <\infty$, there exists a function $f$ such that the sums of shifts of $f$ are dense in $L^{0}_{p}(\mathbb{T})$ (see [1], where whole classes of such functions were distinguished). There exists a function on the real line $\mathbb{R}$ such that the sums of shifts of it are dense in all real spaces $L_{p}(\mathbb{R})$ for $2 \leqslant p <\infty$ [2]. The real space $l_{2}(\mathbb{Z})$ of two-sided sequences contains an element such that the sums of its shifts are dense in all real spaces $l_{p}(\mathbb{Z})$ for $2 \leqslant p <\infty$ (see [3]). In [4] these results were extended to several dimensions, that is, to the torus $\mathbb{T}^{d}$, the space $\mathbb{R}^{d}$ and the lattice $\mathbb{Z}^{d}$, where $d \in \mathbb{N}$. In [5] sufficient conditions on a function $f$ were found under which the sums of functions of the form $f(\alpha x - \theta)$, $ \alpha \in A \subset \mathbb{R}$, $\theta \in \Theta \subset \mathbb{R}$, are dense in the real space $L_{p}$ on the line or a compact subset of it. For a survey of results on the density of the sums of shifts of a single function, see [6]. In this connection the following problem arises in the natural way, which was stated in [6].

Problem 1. Let $G$ be a locally compact Abelian group with Haar measure $m$. Does there exist a function $f$ on this group such that the sums

$$ \begin{equation} \sum_{k=1}^{n} f(g+g_{k}), \qquad g_{k} \in G, \quad n \in \mathbb{N}, \end{equation} \tag{1.1} $$
of shifts of $f$:

The compact case is distinguished in Problem 1 for the following reason. If $G$ is a compact Abelian group, then its Haar measure satisfies $m(G) < \infty$ (see [7], Ch. 4, § 15, Theorem 15.9). Then for a function $f \in L_{2}(G)$ the sums (1.1) of shifts of $f$ cannot be dense in the whole of $L_{2}(G)$: the mean value $\displaystyle \int_{G}f(g)\,dm(g)=\alpha$ of $f$ is defined and sums (1.1) cannot approximate functions with mean value outside the set $\{n\alpha\colon n \in \mathbb{N} \}$.

The aim of this paper is to give an exhaustive answer to question (b) in Problem 1, namely, establish the following result.

Theorem 1. Let $G$ be a nontrivial compact Abelian group. Then a function $f$: $G \to \mathbb{R}$ such that the sums (1.1) of shifts of $f$ are dense in the real space $L_{2}^{0}(G)$ exists if and only if $G$ is connected and its character group is infinite countable.

Note that if $G$ is a trivial group consisting of the single neutral element, then the space $L_{2}^{0}(G)$ contains only the function identically equal to zero, the sums of shifts of which are dense in this space.

§ 2. Auxiliary lemmas

Throughout what follows $f_{g}(\,\cdot\,)=f(\,\cdot+g)$ is the shift of $f$ by the element $g$ of $G$. We prove a few auxiliary lemmas.

Lemma 1. If $G$ is a finite nontrivial Abelian group, then there exists no function $f\colon G \to \mathbb{R}$ such that the sums (1.1) of shifts of it are dense in the real space $L_{2}^{0}(G)$.

Proof. We fix a real function $f \in L_{2}^{0}(G)$ and number the elements of the group: $G= \{g_{1}, g_{2}, \dots , g_{N} \}$, $ N \geqslant 2$. Each $g_{k}$ is an atom of the measure $m$, and $m(g_{k})=1/N$. We represent a function $h\colon G \to \mathbb{R}$ as the vector of values $(h(g_{1}), h(g_{2}), \dots , h(g_{N}))$, and we represent $L_{2}^{0}(G)$ as the space $L$ of vectors of length $N$ with sum of coordinates equal to zero. Since $f$ has mean value zero, for each $g \in G$ we have $\sum_{n=1}^{N} f(g+g_{n})=0$. Therefore,
$$ \begin{equation} \sum_{n=1}^{N} f_{g_{n}}=0. \end{equation} \tag{2.1} $$

Consider the set of sums of shifts of $f$:

$$ \begin{equation} S :=\biggl\{\sum_{k=1}^{m} f_{h_{k}}\colon h_{k} \in G, \ m \in \mathbb{N} \biggr\} =\biggl\{\sum_{n=1}^{N} \nu_{n}f_{g_{n}}\colon \nu_{n} \in \mathbb{N} \cup \{0\} \biggr\}. \end{equation} \tag{2.2} $$
From (2.1) and (2.2) we obtain
$$ \begin{equation*} \begin{aligned} \, S&=\biggl\{\sum_{n=1}^{N-1} \nu_{n}f_{g_{n}} - \nu_{N}\biggl( \sum_{n=1}^{N-1} f_{g_{n}} \biggr)\colon \nu_{n} \in \mathbb{N} \cup \{0\} \biggr\} \\ &=\biggl\{\sum_{n=1}^{N-1} (\nu_{n} - \nu_{N})f_{g_{n}}\colon \nu_{n} \in \mathbb{N} \cup \{0\} \biggr\} =\biggl\{\sum_{n=1}^{N-1} \lambda_{n}f_{g_{n}}\colon \lambda_{n} \in \mathbb{Z} \biggr\}. \end{aligned} \end{equation*} \notag $$
If the vectors $f_{g_{n}}$, $ n=1,\dots ,N-1$, are linearly independent, then the set $S$, and therefore also its closure $\overline{S}$, is the integer lattice generated by these vectors, so the closure $\overline{S}$ cannot coincide with the $(N-1)$-dimensional space $L$. If the vectors $f_{g_{n}}$, $ n=1,\dots ,N-1$, are linearly dependent, then $\overline{S}$ lies in a subspace of dimension at most $N-2$, so it cannot coincide with $L$ of dimension $N-1$.

Lemma 1 is proved.

Lemma 2. Let $G$ be a compact Abelian group and $H$ be a closed subgroup of $G$. If there exists a function $f_{0}\colon G \to \mathbb{R}$ the sums of shifts of which are dense in the real space $L_{2}^{0}(G)$, then there exists a function $F_{0}\colon G/H \to \mathbb{R}$ the sums of shifts of which are dense in the real space $L_{2}^{0}(G/H)$.

Proof. Since $G$ is a compact Abelian group and $H$ is a closed subgroup of it, $G/H$ is a compact Abelian group (see [7], Ch. 2, § 5, Theorem 5.22, and [8], Appendix B, § B6). We denote the coset of an element $x \in G$ by the subgroup $H$ by $\widehat{x}$. According to [8], Ch. 2, § 2.7.3, the groups $G, H$ and $G/H$ are endowed with the Haar measures $m_{G}$, $m_{H}$ and $ m_{G/H}$ such that $m_{H}(H)=1$ and for each function $f \in L_{1}(G)$ the function
$$ \begin{equation} F(\widehat{x})=\int_{H}f(x+y)\,dm_{H}(y) \end{equation} \tag{2.3} $$
is well defined on $G/H$; moreover, the map $T\colon f \mapsto F$ is a bounded linear operator $T\colon L_{1}(G) \to L_{1}(G/H)$ and
$$ \begin{equation} \int_{G}f\,dm_{G}=\int_{G/H}F(\widehat{x})\,dm_{G/H}(\widehat{x}). \end{equation} \tag{2.4} $$
Since $f_{0} \in L_{2}^{0}(G)$ and $G$ is a compact group, it follows that $f_{0} \in L_{1}(G)$ and the function $F_{0}=Tf_{0} \in L_{1}(G/H)$ is well defined. Using equality (2.4) for the functions $f_{0}$, $|f_{0}|^{2} \in L_{1}(G)$, we obtain
$$ \begin{equation*} \begin{aligned} \, &\int_{G/H}F_{0}(\widehat{x})\,dm_{G/H}(\widehat{x})=\int_{G}f_{0}\,dm_{G}=0, \\ &\int_{G/H}|F_{0}(\widehat{x})|^{2}\,dm_{G/H}(\widehat{x})=\int_{G/H} \biggl| \int_{H}f_{0}(x+y)\,dm_{H}(y) \biggr|^{2}\,dm_{G/H}(\widehat{x}) \\ &\qquad \leqslant \int_{G/H} \int_{H} |f_{0}(x+y)|^{2}\,dm_{H}(y)\,dm_{G/H}(\widehat{x}) \\ &\qquad= \int_{G}|f_{0}(x)|^{2}\,dm_{G}(x)=\| f_{0} \|_{L_{2}(G)}^{2} < \infty, \end{aligned} \end{equation*} \notag $$
that is, $F_{0} \in L_{2}^{0}(G/H)$.

Now we show that the sums of shifts of $F_{0}$ are dense in the space $L_{2}^{0}(G/H)$. We fix $P \in L_{2}^{0}(G/H)$ and define a function $p$ on $G$ by $p(g):=P(\widehat{g})$. Clearly, $P=Tp$. By Theorem 3 in [9], Ch. VIII, § 39, $p$ is a function in $L_{1}(G)$, and we have

$$ \begin{equation*} \int_{G}p\,dm_{G}=\int_{G/H} P\,dm_{G/H}=0, \qquad \int_{G}|p|^{2}\,dm_{G}= \int_{G/H} |P|^{2}\,dm_{G/H} < \infty . \end{equation*} \notag $$
Thus, $p \in L_{2}^{0}(G)$, and for each $\varepsilon>0$ there exist by assumption $n \in \mathbb{N}$ and $ g_{k} \in G$, $ k=1,\dots ,n$, such that
$$ \begin{equation} \biggl\| p(g) - \sum_{k=1}^{n}f_{0}(g+g_{k}) \biggr\|_{L_{2}(G)} < \varepsilon. \end{equation} \tag{2.5} $$
Using the definition of $F_{0}$, equalities (2.3) and (2.4) for the function $|p(\,\cdot\,) - \sum_{k=1}^{n}f_{0}(\,\cdot+g_{k})|^{2}$ and inequality (2.5) we obtain
$$ \begin{equation*} \begin{aligned} \, &\biggl\| P(\widehat{g}) - \sum_{k=1}^{n}F_{0}(\widehat{g}+\widehat{g_{k}}) \biggr\|_{L_{2}(G/H)}^{2} \\ &\qquad =\int_{G/H} \biggl| \int_{H} \biggl( p(g+y) - \sum_{k=1}^{n}f_{0}(g+g_{k}+y) \biggr)\,dm_{H}(y) \biggr|^{2}\,dm_{G/H}(\widehat{g}) \\ &\qquad \leqslant \int_{G/H} \biggl( \int_{H} \biggl| p(g+y) - \sum_{k=1}^{n}f_{0}(g+g_{k}+y) \biggr|^{2}\,dm_{H}(y) \biggr)\,dm_{G/H}(\widehat{g}) \\ &\qquad =\int_{G} \biggl| p(g) - \sum_{k=1}^{n}f_{0}(g+g_{k}) \biggr|^{2}\,dm_{G}(g) < \varepsilon^{2}. \end{aligned} \end{equation*} \notag $$
This means exactly that the sums of shifts of $F_{0}$ are dense in $L_{2}^{0}(G/H)$.

Lemma 2 is proved.

Let $G^{*}$ denote the group of continuous characters of $G$, and $\mathbb{I}$ denote the unit character on $G$. Let $H$ be a closed subgroup of the locally compact Abelian group $G$ and $H^{\perp}$ be the set of $\gamma \in G^{*}$ such that $\gamma(h)=1$ for all $h \in H$. Then $H^{\perp}$ is called the annihilator of $H$. By [8], Ch. 2, § 2.1.1, $H^{\perp}$ is a closed subgroup of $G^{*}$.

Lemma 3. Let $G$ be a disconnected compact Abelian group. Then there does not exist a function $f$ in the real space $L_{2}^{0}(G)$ such that the sums of shifts (1.1) of $f$ are dense in this space.

Proof. By [7], Ch. 6, § 24, Theorem 24.25, the character group $G^{*}$ of a disconnected compact Abelian group $G$ has torsion: it contains a nontrivial element $\chi_{0} \in G^{*}$ of finite order $n_{0} \geqslant 2$. Therefore, $\Xi :=\{\chi_{0}, \chi_{0}^{2}, \dots , \chi_{0}^{n_{0}} \equiv \mathbb{I} \} $ is a closed subgroup of $G^{*}$ of order $n_{0}$. Let $H=\Xi^{\perp}$ be the annihilator of $\Xi \subset G^{*}$. Then $H$ is a closed subgroup of $(G^{*})^{*}$, so that by Pontryagin’s duality theorem (see [8], Ch. 1, § 1.7.2) $H$ is a closed subgroup of $G$ and the quotient group $G/H$ coincides with $(G^{*})^{*}/\,\Xi^{\perp}$. By [8], Ch. 2, § 2.1.2, the quotient group $(G^{*})^{*}/\,\Xi^{\perp}$ is topologically isomorphic to $\Xi^{*}$. By [7], Ch. 6, § 23.27.d, the character group $\Xi^{*}$ of the finite Abelian group $\Xi$ is topologically isomorphic to $\Xi$. Thus, the disconnected compact Abelian group $G$ contains a closed subgroup $H$ such that $G/H$ is topologically isomorphic to a finite group $\Xi$ of order $n_{0} \geqslant 2$.

Assume that there exists a function $f$ in the real space $L_{2}^{0}(G)$ such that the sums (1.1) are dense in this space. Then by Lemma 2 there exists a function $F$ in the real space $L_{2}^{0}(G/H)$ such that the sums of shifts of $F$ are dense in this space. However, $G/H$ is a nontrivial finite Abelian group. This is in contradiction to Lemma 1.

Lemma 3 is proved.

Lemma 4. Let $G$ be a nontrivial compact Abelian group such that its character group $G^{*}$ is not infinite countable. Then in the real space $L_{2}^{0}(G)$ there exists no function $f$ such that the sums of shifts (1.1) are dense in this space.

Proof. If $G^{*}$ is finite, then by [7], Ch. 6, § 23.27.d, $G$ is topologically isomorphic to $G^{*}$, so $G$ is a nontrivial finite Abelian group and the required result follows from Lemma 1.

Consider the case when $G^{*}$ is uncountable. Let $f \in L_{2}^{0}(G)$. Then by the completeness of the system of characters of a compact Abelian group ([10], Ch. III, § 2, Theorem 3.9) the character group $G^{*}$ is an orthonormal basis of $L_{2}(G)$; in particular, $f$ expands in a Fourier series in the system of characters:

$$ \begin{equation*} f(g)=\sum_{\alpha}c_{\alpha}\chi_{\alpha}(g), \qquad G^{*}=\{\chi_{\alpha} \}, \end{equation*} \notag $$
where the set of nonzero coefficients $c_{\alpha}$ is at most countable (otherwise Parseval’s identity does not hold). Hence
$$ \begin{equation*} f(g)=\sum_{k \in \mathbb{N}}c_{\alpha_{k}}\chi_{\alpha_{k}}(g), \qquad c_{\alpha_{k}} \neq 0, \end{equation*} \notag $$
and
$$ \begin{equation*} f(g+h)=\sum_{k \in \mathbb{N}}c_{\alpha_{k}}\chi_{\alpha_{k}}(h)\chi_{\alpha_{k}}(g). \end{equation*} \notag $$
Then sums of shifts of $f$ lie in the closed subspace $L$ of the real space $L_{2}^{0}(G)$ that is spanned by the functions $\chi_{\alpha_{k}}$, $ k \in \mathbb{N}$, and, as a basis of $L_{2}^{0}(G)$ is uncountable, $L$ does not coincide with $L_{2}^{0}(G)$.

Lemma 4 is proved.

§ 3. Proof of Theorem 1

Proof. Necessity. This follows from Lemmas 3 and 4.

Sufficiency. Now let $G$ be a connected compact Abelian group with infinite countable character group $G^{*}$. We prove in several steps that the required function exists.

1. Let $\chi$ be a continuous character on the group $G$, $\mathbf{0}$ be the identity element of $G$, and $\mathbb{I}$ be the neutral element of $G^{*}$. Then $\overline{\chi}$ is also a continuous character on $G$, and $\chi \equiv \overline{\chi}$ on $G$ if and only if $\chi$ takes only the values $\pm 1$ in $G$. However, $\chi(\mathbf{0})=1$ and $G$ is a connected group, so $\chi \equiv \overline{\chi}$ if and only if $\chi \equiv \mathbb{I}$. Thus, the group $G^{*}$ has the form

$$ \begin{equation*} G^{*}=\{\chi_{\nu} \}_{\nu=1}^{\infty} \sqcup \{\overline{\chi}_{\nu} \}_{\nu=1}^{\infty} \sqcup \{\mathbb{I} \}. \end{equation*} \notag $$
Note that $G^{*}$ has a discrete topology (see [8], Ch. 1, § 2, Theorem 1.2.5), and compact subsets of $G^{*}$ are merely finite subsets of it. By the completeness of the system of characters of a compact Abelian group (see [10], Ch. III, § 2, Theorem 3.9) $G^{*}$ forms an orthonormal basis of $L_{2}(G)$, and each real function $f \in L_{2}^{0}(G)$ expands in a Fourier series in the system $G^{*}$:
$$ \begin{equation*} f(g)=\sum_{\nu=1}^{\infty}c_{\nu}\chi_{\nu}(g)+\sum_{\nu=1}^{\infty}\overline{c_{\nu}} \overline{\chi}_{\nu}(g), \qquad c_{\nu} \in \mathbb{C}. \end{equation*} \notag $$
We seek a function $f$ such that the sums of shifts of $f$ are dense in $L_{2}^{0}(G)$ in the following form:
$$ \begin{equation} f(g)=\sum_{\nu=1}^{\infty}c_{\nu}(\chi_{\nu}(g)+\overline{\chi}_{\nu}(g)), \qquad c_{\nu} \in \mathbb{R}. \end{equation} \tag{3.1} $$

2. By [7], Ch. 6, § 24, Theorem 24.15, the topological weight $\mu(G)$ of the compact Abelian group $G$ coincides with the cardinality of $G^{*}$, that is, it is infinite countable. By [7], Ch. 6, § 25, Theorem 25.14, if the topological weight $\mu(G)$ of a connected compact Abelian group $G$ does not exceed the cardinality of a continuum, then $G$ is monothetic, that is, there exists $g_{0} \in G$ such that $\overline{\{ng_{0}\colon n \in \mathbb{Z} \}}=G$. By [7], Ch. 6, § 25, Theorem 25.11, each nontrivial character is distinct from 1 at the element $g_{0}$: $\chi_{\nu}(g_{0}) \neq 1$, $ \nu \in \mathbb{N}$. Therefore,

$$ \begin{equation} \forall\, k \in \mathbb{N} \quad \exists\, \delta_{k}>0\colon \quad|\chi_{\nu}(g_{0}) - 1| \geqslant \delta_{k} \quad \text{for } \nu=1,\dots,k. \end{equation} \tag{3.2} $$
For each $k \in \mathbb{N}$ fix $\varepsilon_{k} \in (0, \delta_{k}/k)$. By Dirichlet’s theorem on simultaneous approximation (see [11], Ch. 1, § 5) there exists a sequence of positive integers $\{N_{k} \}_{k=0}^{\infty}$ such that
$$ \begin{equation} N_{0}=1, \qquad N_{k} \geqslant kN_{k-1} \quad \text{and} \quad |(\chi_{\nu}(g_{0}))^{N_{k}} - 1| < \varepsilon_{k}, \qquad \nu=1,\dots,k, \quad k \in \mathbb{N}; \end{equation} \tag{3.3} $$
in particular, the sequence $\{N_{k} \}_{k=0}^{\infty}$ satisfies the condition
$$ \begin{equation} N_{k+m} \geqslant (k+m)(k+m-1)\dotsb(k+1)N_{k}, \qquad k, m \in \mathbb{N}. \end{equation} \tag{3.4} $$

3. By [7], Ch 6, § 25, Theorem 25.18, 2 $\Rightarrow$ 3, given a connected compact Abelian group $G$, there exists a homomorphism $\varphi\colon G^{*} \to \mathbb{R}_{d}$ into the additive group $\mathbb{R}_{d}$ of real numbers endowed with the discrete topology. According to another part of the same result (see [7], Ch. 6, § 25, Theorem 25.18, 3 $\Rightarrow$ 1), $G$ is solenoidal, that is, there exists a continuous homomorphism $\tau \colon \mathbb{R} \to G$ such that $\overline{\tau(\mathbb{R})}=G$, and we can see from the proof that

$$ \begin{equation} \forall\, \chi \in G^{*}, \quad \forall\, t \in \mathbb{R}\colon\quad \chi(\tau(t))= \exp(it\varphi(\chi)). \end{equation} \tag{3.5} $$
Set
$$ \begin{equation} a_{m} :=\min \biggl\{\frac{1}{2^{m}}, \frac{1}{(m^{2}|\varphi(\chi_{m})|)}\biggr \}, \qquad m \in \mathbb{N}. \end{equation} \tag{3.6} $$
Here $\varphi(\chi_{m}) \ne 0$ because otherwise $\chi_{m} \equiv 1$ by identity (3.5) since the image of $\tau$ is dense in $G$.

4. We show that the function

$$ \begin{equation} \rho(g, h) :=\sum_{m=1}^{\infty}a_{m} |\chi_{m}(g) - \chi_{m}(h)|, \qquad g, h \in G, \end{equation} \tag{3.7} $$
is a metric on $G$. The function $\rho$ is well defined because equalities (3.6) imply the estimate $\rho(g,h) \leqslant \sum_{m=1}^{\infty} 1/2^{m-1}=2$ for $ g, h \in G$. Clearly, $\rho$ is nonnegative, symmetric and, by the triangle inequality for the modulus, satisfies the triangle inequality. If $\rho(g, h)=0$, then $\chi_{m}(g)=\chi_{m}(h)$ for each $m \in \mathbb{N}$, so that $(\alpha(g- h))(\chi)=\chi(g-h)=1$ for all $\chi \in G^{*}$, where $ \alpha\colon G \to (G^{*})^{*}$ is the canonical isomorphism ([8], Ch. 1, §§ 1.7.1–1.7.2). Therefore, $\alpha(g-h)$ is the identity element of the group $(G^{*})^{*}$, and so $g-h= \mathbf{0}$. It follows from (3.7) that
$$ \begin{equation} |\chi_{m}(g) - \chi_{m}(h)|=|\overline{\chi}_{m}(g) - \overline{\chi}_{m}(h)| \leqslant \frac{\rho(g,h)}{a_{m}}, \qquad m \in \mathbb{N}, \end{equation} \tag{3.8} $$
so that each character $\chi \in G^{*}$ is a Lipschitz function with respect to $\rho$. Moreover, it is obvious from the definition of $\rho$ that this metric is shift invariant.

Now we show that the topology on $G$ induced by $\rho$ coincides with the topology of the group $G$. By [8], Ch. 1, § 1.2.6, and [8], Ch. 1, § 1.7.2, a basis of topology on $G$ consists of the sets

$$ \begin{equation*} N(x, C, r)=\{y \in G\colon |\gamma(y)-\gamma(x)|<r\text{ for all }\gamma \in C \}, \end{equation*} \notag $$
where $x \in G$, $C$ is a compact subset of $G^{*}$ and $r>0$. First we show that for all $\varepsilon>0$ and $x \in G$ there exist a compact set $C \subset G^{*}$ and $r>0$ such that $N(x, C, r) \subset B_{\varepsilon}(x) :=\{y \in G\colon\rho(x, y) < \varepsilon \}$. We choose $M \in \mathbb{N}$ such that ${1/2^{M} < \varepsilon/4}$, and set $r:= \varepsilon/2$ and $C:=\{\chi_{1},\dots ,\chi_{M} \}$. Then for all $y \in N(x, C, r)$ and $m=1,\dots,M$ we have the inequality $|\chi_{m}(y)-\chi_{m}(x)|<r$, so that by the definition of the coefficients $a_{m}$, $m \in \mathbb{N}$,
$$ \begin{equation*} \rho(x, y) \leqslant \sum_{m=1}^{M} a_{m} |\chi_{m}(y) - \chi_{m}(x)|+\sum_{m=M+1}^{\infty} \frac{1}{2^{m-1}} < \sum_{m=1}^{M} \frac{r}{2^{m}}+\frac{1}{2^{M-1}} < \varepsilon, \end{equation*} \notag $$
that is, $y \in B_{\varepsilon}(x)$.

Next we show that for all $r>0$ and $ x \in G$ and each compact set $C \subset G^{*}$ there exists $\varepsilon>0$ such that $B_{\varepsilon}(x) \subset N(x, C, r)$. Because $G^{*}$ is infinite countable and $C \subset G^{*}$ is a compact set, $C$ is finite and there exists $M \in \mathbb{N}$ such that $C \subset \{\mathbb{I}, \chi_{1}, \overline{\chi}_{1}, \dots , \chi_{M}, \overline{\chi}_{M} \}$. Set $\varepsilon:=r\min_{m=1, \dots , M}a_{m}$. If $y \in B_{\varepsilon}(x)$, then by (3.8) we have $|\chi_{m}(y) - \chi_{m}(x)|=|\overline{\chi}_{m}(y) - \overline{\chi}_{m}(x)| < \varepsilon/a_{m} \leqslant r$ for $m=1,\dots , M$, that is, $y \in N(x, C, r)$.

We see that the metric $\rho$ agrees with the topology of the group $G$.

5. Now we prove that the continuous homomorphism $\tau\colon \mathbb{R} \to G$ defined in part 3 of the proof is Lipschitz with respect to the metric $\rho$ on $G$. Let $u, v \in \mathbb{R}$. Then from (3.5) and (3.7) we obtain

$$ \begin{equation*} \begin{aligned} \, \rho(\tau(u), \tau(v)) &=\sum_{m=1}^{\infty}a_{m} |\exp(iu\varphi(\chi_{m})) -\exp(iv\varphi(\chi_{m}))| \\ &\leqslant |u-v| \biggl( \sum_{m=1}^{\infty} a_{m}|\varphi(\chi_{m})| \biggr) \leqslant |u-v| \biggl( \sum_{m=1}^{\infty} \frac{1}{m^{2}} \biggr) \leqslant 2|u-v|, \end{aligned} \end{equation*} \notag $$
where in the penultimate inequality we used the definition (3.6) of the $a_{m}$.

6. For each $\nu \in \mathbb{N}$ we choose a constant $c_{\nu}$ so that

$$ \begin{equation} 0 < c_{\nu} < \min \biggl\{\frac{1}{N_{\nu}},\frac{a_{\nu}}{\nu} \biggr\}, \end{equation} \tag{3.9} $$
where $N_{\nu}$ and $a_{\nu}$ were defined in parts 2 and 3 of the proof, respectively. Then the function $f$ is defined by (3.1). Using inequalities (3.4) and (3.9) we can estimate the norm of $f$ in $L_{2}(G)$:
$$ \begin{equation*} \|f\|_{2}^{2}= 2\sum_{\nu=1}^{\infty}|c_{\nu}|^{2} < 2\sum_{\nu=1}^{\infty}\frac{1}{N_{\nu}^{2}} \leqslant 2 \sum_{\nu=1}^{\infty} \frac{1}{N_{1}^{2}(\nu !)^{2}} \leqslant 4. \end{equation*} \notag $$
Hence $f \in L_{2}^{0}(G)$. Next we estimate the following norm:
$$ \begin{equation*} \begin{aligned} \, &\biggl\|\sum_{m=0}^{N_{k}-1} f(x+mg_{0}) \biggr\|_{2}^{2}=\biggl\| \sum_{m=0}^{N_{k}-1} \sum_{\nu=1}^{\infty} \bigl( c_{\nu} \chi_{\nu}(x) (\chi_{\nu}(g_{0}))^{m}+c_{\nu} \overline{\chi}_{\nu}(x) (\overline{\chi}_{\nu}(g_{0}))^{m} \bigr) \biggr\|_{2}^{2} \\ &\qquad =\biggl\| \sum_{\nu=1}^{\infty} c_{\nu} \biggl( \sum_{m=0}^{N_{k}-1} (\chi_{\nu}(g_{0}))^{m} \biggr) \chi_{\nu}(x)+\sum_{\nu=1}^{\infty} c_{\nu} \biggl( \sum_{m=0}^{N_{k}-1} (\overline{\chi}_{\nu}(g_{0}))^{m} \biggr) \overline{\chi}_{\nu}(x) \biggr\|_{2}^{2} \\ &\qquad =2 \sum_{\nu=1}^{\infty} \biggl| c_{\nu} \sum_{m=0}^{N_{k}-1} (\chi_{\nu}(g_{0}))^{m} \biggr|^{2} \leqslant 2 \sum_{\nu=1}^{k} |c_{\nu}|^{2} \biggl| \frac{(\chi_{\nu}(g_{0}))^{N_{k}} - 1}{\chi_{\nu}(g_{0}) - 1} \biggr|^{2}+2 \sum_{\nu=k+1}^{\infty}|c_{\nu}|^{2} N_{k}^{2}. \end{aligned} \end{equation*} \notag $$
Using conditions (3.2)(3.4) and (3.9) and the definition of the constants $\varepsilon_{k}$ we obtain
$$ \begin{equation*} \begin{aligned} \, &\biggl\|\sum_{m=0}^{N_{k}-1} f(x+mg_{0}) \biggr\|_{2}^{2} \leqslant 2 \sum_{\nu=1}^{k} \frac{1}{N_{\nu}^{2}} \biggl( \frac{\varepsilon_{k}}{\delta_{k}} \biggr)^{2}+2 \sum_{\nu=k+1}^{\infty} \frac{N_{k}^{2}}{N_{\nu}^{2}} \\ &\qquad\leqslant \frac{2}{k^{2}} \sum_{\nu=1}^{k} \frac{1}{N_{\nu}^{2}}+2 \sum_{\nu=k+1}^{\infty} \frac{N_{k}^{2}}{\nu^{2} (\nu -1)^{2}\dotsb (k+1)^{2}N_{k}^{2}} \\ &\qquad \leqslant \frac{2}{k^{2}}k+\frac{2}{(k+1)^{2}}\biggl( 1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+ \dotsb\biggr) \leqslant \frac{2}{k}+\frac{4}{(k+1)^{2}} \to 0, \qquad k \to \infty. \end{aligned} \end{equation*} \notag $$
Hence $-f \in S$, where
$$ \begin{equation*} S=\overline{\biggl\{\sum_{k=1}^{n} f(x+h_{k}),\,h_{k} \in G,\,n \in \mathbb{N} \biggr\}} \end{equation*} \notag $$
(the closure in $L_{2}(G)$). Therefore, $-f(\,\cdot+h)$ belongs to $S$ for all $h \in G$, that is, $S$ is a closed additive subgroup of $L_{2}^{0}(G)$.

7. We require the following result.

Lemma A ([12], Lemma 4). Let $S$ be a closed additive subgroup of a uniformly smooth Banach space $X$ with modulus of smoothness $s(t)$, $ t \geqslant 0$. If $a, b \in S$ and for each $\varepsilon > 0$ there exist $x_{0},\dots ,x_{n} \in S$ such that $x_{0}=a$, $ x_{n}=b$ and $\sum_{k=1}^{n}s(\|x_{k}-x_{k-1}\|) < \varepsilon$, then the whole line segment $[a, b]$ lies in $S$.

Let $h \in G$ and $\varepsilon>0$. Since $\tau\colon \mathbb{R} \to G$ is a homomorphism with dense image and the metric $\rho$ agrees with the topology of $G$ (see parts 3 and 4 of the proof), there exists $w \in \mathbb{R}$ such that $\rho(\tau(w), h)< \sqrt{\varepsilon/2}$. Fix an integer $N > 1+8|w|^{2}/\varepsilon$ and set

$$ \begin{equation*} h_{k}:=\tau \biggl( \frac{kw}{N-1} \biggr), \qquad k=0,\dots ,N-1, \quad h_{N}:=h. \end{equation*} \notag $$
As the metric $\rho$ is translation invariant and $\tau$ is a bi-Lipschitz homomorphism (see parts 4 and 5 of the proof), we obtain the estimate
$$ \begin{equation*} \begin{aligned} \, & \sum_{k=1}^{N}(\rho(h_{k-1}, h_{k}))^{2}=\sum_{k=1}^{N-1} \biggl( \rho \biggl( \tau \biggl( \frac{(k-1)w}{N-1} \biggr), \tau \biggl(\frac{kw}{N-1} \biggr) \biggr) \biggr)^{2}+ (\rho(\tau(w), h))^{2} \\ &\qquad < (N-1)\biggl( \rho \biggl( \tau(0), \tau \biggl( \frac{w}{N-1} \biggr) \biggr) \biggr)^2+ \frac{\varepsilon}{2} \leqslant (N-1)\cdot 4 \biggl|\frac{w}{N-1} \biggr|^{2}+ \frac{\varepsilon}{2} < \varepsilon. \end{aligned} \end{equation*} \notag $$
We can estimate the sum
$$ \begin{equation*} \sum_{k=1}^{N} \bigl\|f(x+h_{k}) - f(x+h_{k-1}) \bigr\|_{2}^{2} \end{equation*} \notag $$
by using the above bound and inequalities (3.8) and (3.9):
$$ \begin{equation} \begin{aligned} \, \notag &\sum_{k=1}^{N} \bigl\|f(x+h_{k}) - f(x+h_{k-1}) \bigr\|_{2}^{2} \\ \notag &\qquad =\sum_{k=1}^{N} \biggl\| \sum_{\nu=1}^{\infty} (c_{\nu}(\chi_{\nu}(h_{k}) - \chi_{\nu}(h_{k-1})) \chi_{\nu}(x)+c_{\nu}(\overline{\chi}_{\nu}(h_{k}) - \overline{\chi}_{\nu}(h_{k-1})) \overline{\chi}_{\nu}(x)) \biggr\|_{2}^{2} \\ \notag &\qquad =2 \sum_{k=1}^{N} \sum_{\nu=1}^{\infty} |c_{\nu}(\chi_{\nu}(h_{k}) - \chi_{\nu}(h_{k-1}))|^{2} \leqslant 2 \biggl( \sum_{\nu=1}^{\infty} \frac{c_{\nu}^{2}}{a_{\nu}^{2}} \biggr) \biggl( \sum_{k=1}^{N}(\rho(h_{k-1}, h_{k}))^{2} \biggr) \\ &\qquad < 2 \varepsilon \sum_{\nu=1}^{\infty} \frac{1}{\nu^{2}} < 4\varepsilon. \end{aligned} \end{equation} \tag{3.10} $$

Thus, the subgroup $S$ defined in part 6 of the proof lies in the space $L_{2}^{0}(G)$ with modulus of smoothness $s(t)=\sqrt{1+t^{2}} - 1=O(t^{2})$ (for instance, see [13], Ch. 1, § e) and moreover, the functions $f(x+h_{0})=f(x)$, $ f(x+h_{1})$, $\dots $, $ f(x+h_{N})=f(x+h)$ belong to $S$ and (3.10) holds. Then by Lemma A, for each $\lambda \in [0,1]$ the function $\lambda f(x)+(1- \lambda) f(x+h)$ belongs to $ S$. Hence for each $\lambda \in \mathbb{R}$ we also have $\lambda (f(x)- f(x+h)) \in S$. Therefore, $S$ contains the closed $\mathbb{R}$-linear subspace $L$ spanned by the functions of the form $f(\,\cdot\,) - f(\cdot+ h)$, $ h \in G$.

8. We show that $L$ coincides with the real space $L_{2}^{0}(G)$. Otherwise there exists a nontrivial real function $r \in L_{2}^{0}(G)$ such that

$$ \begin{equation*} \int_{G}(f(x+h)-f(x))r(x)\,dm(x) \equiv 0 \quad\!\Longrightarrow\!\quad \int_{G}f(x+h)r(x)\,dm(x) \equiv \mathrm{const}, \quad h \in G. \end{equation*} \notag $$
As $r$ is real valued, its Fourier expansion looks like
$$ \begin{equation*} r(x)=\sum_{\nu=1}^{\infty}d_{\nu} \chi_{\nu}(x)+\sum_{\nu=1}^{\infty} \overline{d_{\nu}} \overline{\chi}_{\nu}(x), \qquad d_{\nu} \in \mathbb{C}. \end{equation*} \notag $$
Now by the expansion
$$ \begin{equation*} f(x+h)=\sum_{\nu=1}^{\infty}c_{\nu}\chi_{\nu}(h)\chi_{\nu}(x)+ \sum_{\nu=1}^{\infty}c_{\nu}\overline{\chi}_{\nu}(h)\overline{\chi}_{\nu}(x) \end{equation*} \notag $$
we have
$$ \begin{equation*} \sum_{\nu=1}^{\infty}c_{\nu}\overline{d_{\nu}}\chi_{\nu}(h)+ \sum_{\nu=1}^{\infty}c_{\nu}d_{\nu}\overline{\chi}_{\nu}(h) \equiv \mathrm{const}, \qquad h \in G. \end{equation*} \notag $$
Since the sequences $\{c_{\nu} \}_{\nu \in \mathbb{N}}$ and $ \{d_{\nu} \}_{\nu \in \mathbb{N}}$ belong to $l_{2}$, the left-hand side of the above identity is an absolutely convergent Fourier series in $h$, and therefore $c_{\nu}d_{\nu}= c_{\nu}\overline{d_{\nu}}=0$, $ \nu \in \mathbb{N}$. Since $c_{\nu} > 0$ for $\nu \in \mathbb{N}$, we obtain $d_{\nu}=0$ for $\nu \in \mathbb{N}$, that is, $r\equiv 0$, which contradicts the assumptions.

Thus, the subspace $L$, and therefore the subgroup $S$, coincides with the real space $L_{2}^{0}(G)$.

Theorem 1 is proved.

§ 4. Complex case

Remark 1. Let $G$ be a nontrivial compact Abelian group. Then there does not exist a function $f$ in the complex space $L_{2}^{0}(G)$ whose sums of shifts (1.1) are dense in this space.

In fact, given a disconnected compact Abelian group $G$ or a nontrivial compact Abelian group $G$ whose character group $G^{*}$ is not infinite countable, if there exists a function $f$ such that the sums of shifts of $f$ are dense in the complex space $L_{2}^{0}(G)$, then the sums of shifts of $\operatorname{Re} f$ are dense in the real space $L_{2}^{0}(G)$, in contradiction to Lemma 3 or Lemma 4, respectively.

Now let $G$ be a connected compact Abelian group with infinite countable character group $G^{*}=\Gamma_{1} \sqcup \Gamma_{2} \sqcup \{\mathbb{I} \}$, where $ \Gamma_{1}=\{\chi_{\nu} \}_{\nu=1}^{\infty}$ and $ \Gamma_{2}=\{\overline{\chi}_{\nu} \}_{\nu=1}^{\infty}$, and assume that there exists a function $f$ in the complex space $L_{2}^{0}(G)$ such that the sums of shifts of $f$ are dense in this space. Let $m_{G}$ and $ m_{G^{*}}$ be the Haar measures on $G$ and $G^{*}$, respectively. Then the Fourier transform

$$ \begin{equation*} g(\chi):=\widehat{f}(\chi)=\int_{G}f(x)\chi(-x)\,dm_{G}(x) \end{equation*} \notag $$
of $f$ and also the function
$$ \begin{equation*} g_{1}\colon G^{*} \to \mathbb{C}, \qquad g_{1}(\chi) := \begin{cases} g(\overline{\chi}), &\chi \in \Gamma_{1}, \\ -g(\overline{\chi}), &\chi \in \Gamma_{2}, \\ 0, &\chi \equiv \mathbb{I}, \end{cases} \end{equation*} \notag $$
belong to $L_{2}(G^{*})$ (see [8], Ch. 1, vol. 1.6.1), and the inverse Fourier transform $f_{1}:=\check{g_{1}}$ belongs to $L_{2}^{0}(G)$ because
$$ \begin{equation*} \int_{G}f_{1}(x)dm_{G}(x)= \widehat{f_{1}}(\mathbb{I})=g_{1}(\mathbb{I})=0. \end{equation*} \notag $$
Note that by assumption the function $f$ is nontrivial, so that $g, g_{1}$ and $ f_{1}$ are also nontrivial. For $y \in G$ we have
$$ \begin{equation*} \begin{aligned} \, &\int_{G} f(x+y)\overline{f_{1}(x)}\,dm_{G}(x)=\int_{G^{*}} \widehat{f(\cdot+y)}(\chi) \overline{\widehat{f_{1}(\,\cdot\,)}(\chi)}\,dm_{G^{*}}(\chi) \\ &\qquad =\int_{G^{*}} \chi(y) \widehat{f}(\chi) \overline{g_{1}(\chi)}\,dm_{G^{*}}(\chi) =\int_{G^{*}} \chi(y) g(\chi) \overline{g_{1}(\chi)}\,dm_{G^{*}}(\chi) \\ &\qquad =\int_{\Gamma_{1}} \chi(y) g(\chi) \overline{g(\overline{\chi})}\,dm_{G^{*}}(\chi) - \int_{\Gamma_{2}} \chi(y) g(\chi) \overline{g(\overline{\chi})}\,dm_{G^{*}}(\chi) \\ &\qquad =\int_{\Gamma_{1}} \chi(y) g(\chi) \overline{g(\overline{\chi})}\,dm_{G^{*}}(\chi) - \int_{\Gamma_{1}} \overline{\chi}(y) g(\overline{\chi}) \overline{g(\chi)}\,dm_{G^{*}}(\chi) \\ &\qquad =\int_{\Gamma_{1}} \bigl( \chi(y) g(\chi) \overline{g(\overline{\chi})} - \overline{\chi(y) g(\chi) \overline{g(\overline{\chi})}} \bigr)\,dm_{G^{*}}(\chi). \end{aligned} \end{equation*} \notag $$
Thus,
$$ \begin{equation*} \operatorname{Re} \int_{G} f(x+y)\overline{f_{1}(x)}\,dm_{G}(x)=0 \end{equation*} \notag $$
for all $y \in G$, and thus sums of shifts of $f$ lie in a real hyperplane in the complex space $L_{2}^{0}(G)$, so that they cannot be dense in this space.

The author is grateful to P. A. Borodin for stating the problem and making useful comments.


Bibliography

1. P. A. Borodin, “Approximation by sums of shifts of a single function on the circle”, Izv. Math., 81:6 (2017), 1080–1094  mathnet  crossref  mathscinet  zmath  adsnasa
2. P. A. Borodin and S. V. Konyagin, “Convergence to zero of exponential sums with positive integer coefficients and approximation by sums of shifts of a single function on the line”, Anal. Math., 44:2 (2018), 163–183  crossref  mathscinet  zmath
3. P. A. Borodin, “Density of sums of shifts of a single vector in sequence spaces”, Proc. Steklov Inst. Math., 303 (2018), 31–35  mathnet  crossref  mathscinet  zmath
4. N. A. Dyuzhina, “Multidimensional analogs of theorems about the density of sums of shifts of a single function”, Math. Notes, 113:5 (2023), 731–735  mathnet  crossref  mathscinet  zmath
5. K. Shklyaev, “Approximation by sums of shifts and dilations of a single function and neural networks”, J. Approx. Theory, 291 (2023), 105915, 17 pp.  crossref  mathscinet  zmath
6. P. A. Borodin and K. S. Shklyaev, “Density of quantized approximations”, Russian Math. Surveys, 78:5 (2023), 797–851  mathnet  crossref  mathscinet  adsnasa
7. E. Hewitt and K. A. Ross, Abstract harmonic analysis, v. 1, Grundlehren Math. Wiss., 115, Springer-Verlag; Academic Press, Inc., Publishers, Berlin–Göttingen–Heidelberg, 1963, viii+519 pp.  crossref  mathscinet  zmath
8. W. Rudin, Fourier analysis on groups, Intersci. Tracts Pure Appl. Math., 12, Interscience Publishers (a division of John Wiley & Sons), New York–London, 1962, ix+285 pp.  crossref  mathscinet  zmath
9. P. R. Halmos, Measure theory, D. Van Nostrand Co., Inc., New York, 1950, xi+304 pp.  crossref  mathscinet  zmath
10. G. N. Agaev, N. Ya. Vilenkin, G. M. Dzhafarli and A. I. Rubinshtein, Multiplicative systems of functions and harmonic analysis on zero-dimensional groups, Èlm, Baku, 1981, 180 pp. (Russian)  mathscinet  zmath
11. J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Math. and Math. Phys., 45, Cambridge Univ. Press, New York, 1957, x+166 pp.  mathscinet  zmath
12. P. A. Borodin, “Density of a semigroup in a Banach space”, Izv. Math., 78:6 (2014), 1079–1104  mathnet  crossref  mathscinet  zmath  adsnasa
13. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin–New York, 1979, x+243 pp.  mathscinet  zmath

Citation: N. A. Dyuzhina, “Density of the sums of shifts of a single function in the $L_2^0$ space on a compact Abelian group”, Mat. Sb., 215:6 (2024), 29–40; Sb. Math., 215:6 (2024), 743–754
Citation in format AMSBIB
\Bibitem{Dyu24}
\by N.~A.~Dyuzhina
\paper Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group
\jour Mat. Sb.
\yr 2024
\vol 215
\issue 6
\pages 29--40
\mathnet{http://mi.mathnet.ru/sm10011}
\crossref{https://doi.org/10.4213/sm10011}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4804036}
\transl
\jour Sb. Math.
\yr 2024
\vol 215
\issue 6
\pages 743--754
\crossref{https://doi.org/10.4213/sm10011e}
Linking options:
  • https://www.mathnet.ru/eng/sm10011
  • https://doi.org/10.4213/sm10011e
  • https://www.mathnet.ru/eng/sm/v215/i6/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:370
    Russian version PDF:3
    English version PDF:6
    Russian version HTML:20
    English version HTML:38
    References:13
    First page:121
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024