Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 2, Pages 199–203
DOI: https://doi.org/10.15372/SJNM20230206
(Mi sjvm838)
 

Pseudo-commutation classes of complex matrices and their decomplexification

Kh. D. Ikramov

Lomonosov Moscow State University, Russia
References:
Abstract: The relation between complex matrices $H$ and $A$ given by the equality $HA=\overline{A}H$ is called the pseudo-commutation. The set $S_H$ of all $A$ that pseudo-commute with a nonsingular $n\times n$ matrix $H$ is called the pseudo-commutation class defined by $H$. Every class $S_H$ is a subspace of the space $M_n(\mathbf{C})$ interpreted as a real vector space of dimension $2n^2$. Under the assumption $\mathrm{dim}_{\mathbf{R}}S_H=n^2$, we find a necessary and sufficient condition for the possibility to decomplexify all the matrices in $S_H$ by one and the same similarity transformation.
Key words: centrohermitian matrices, cross-matrices, block quaternion, consimilarity, Schur's lemma.
Received: 27.10.2022
Revised: 04.11.2022
Accepted: 30.01.2023
Document Type: Article
UDC: 512.643
Language: Russian
Citation: Kh. D. Ikramov, “Pseudo-commutation classes of complex matrices and their decomplexification”, Sib. Zh. Vychisl. Mat., 26:2 (2023), 199–203
Citation in format AMSBIB
\Bibitem{Ikr23}
\by Kh.~D.~Ikramov
\paper Pseudo-commutation classes of complex matrices and their decomplexification
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 2
\pages 199--203
\mathnet{http://mi.mathnet.ru/sjvm838}
\crossref{https://doi.org/10.15372/SJNM20230206}
Linking options:
  • https://www.mathnet.ru/eng/sjvm838
  • https://www.mathnet.ru/eng/sjvm/v26/i2/p199
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:58
    Full-text PDF :2
    References:13
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024