Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2023, Volume 26, Number 2, Pages 183–198
DOI: https://doi.org/10.15372/SJNM20230205
(Mi sjvm837)
 

A dual method for solving the equilibrium problem of a body containing a thin defect

A. Zhiltsova, N. N. Maksimovab

a Far Eastern State Transport University
b Amur State University, Blagoveshchensk, Amur region
References:
Abstract: An equilibrium problem of a two-dimensional body with a thin defect whose properties are characterized by a fracture parameter is considered. The problem is discretized, and an approximation accuracy theorem is proved. To solve the problem, a dual method based on a modified Lagrange functional is used. In computational experiments, when solving the direct problem, a generalized Newton's method is used with a step satisfying Armijo's condition.
Key words: body with defect, finite element method, duality methods, Lagrange functionals, generalized Newton’s method, Armijo’s condition.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 122082400001-8
Received: 31.10.2022
Revised: 28.11.2022
Accepted: 30.01.2023
Document Type: Article
UDC: 519.632, 519.853.2
Language: Russian
Citation: A. Zhiltsov, N. N. Maksimova, “A dual method for solving the equilibrium problem of a body containing a thin defect”, Sib. Zh. Vychisl. Mat., 26:2 (2023), 183–198
Citation in format AMSBIB
\Bibitem{ZhiMak23}
\by A.~Zhiltsov, N.~N.~Maksimova
\paper A dual method for solving the equilibrium problem of a body containing a thin defect
\jour Sib. Zh. Vychisl. Mat.
\yr 2023
\vol 26
\issue 2
\pages 183--198
\mathnet{http://mi.mathnet.ru/sjvm837}
\crossref{https://doi.org/10.15372/SJNM20230205}
Linking options:
  • https://www.mathnet.ru/eng/sjvm837
  • https://www.mathnet.ru/eng/sjvm/v26/i2/p183
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:70
    Full-text PDF :2
    References:21
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025