Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 3, Pages 299–311
DOI: https://doi.org/10.15372/SJNM20210306
(Mi sjvm782)
 

This article is cited in 1 scientific paper (total in 1 paper)

On filter banks in spline wavelet transform on a non-uniform grid

A. A. Makarova, S. V. Makarovab

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
Full-text PDF (545 kB) Citations (1)
References:
Abstract: An explicit representation of filter banks for constructing the wavelet transform of spaces of linear minimal splines on non-uniform grids on a segment is obtained. The decomposition and reconstruction operators are constructed, their mutual inverse is proved. The relations connecting the corresponding filters are established. The approach to constructing the spline wavelet decompositions used in this paper is based on approximation relations as the initial structure for constructing spaces of minimal splines and calibration relations to prove the embedding of the corresponding spaces. The advantages of the approach proposed, due to rejecting the formalism of the Hilbert spaces, are in the possibility of using non-uniform grids and fairly arbitrary non-polynomial spline wavelets.
Key words: B-spline, minimal spline, spline wavelet, wavelet transform, filter banks.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation МД-2242.2019.9
This work was supported by the Grants Council (under RF President), grant no.В MD-2242.2019.9.
Received: 01.06.2020
Revised: 24.11.2020
Accepted: 14.04.2021
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 3, Pages 258–268
DOI: https://doi.org/10.1134/S199542392103006X
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. A. Makarov, S. V. Makarova, “On filter banks in spline wavelet transform on a non-uniform grid”, Sib. Zh. Vychisl. Mat., 24:3 (2021), 299–311; Num. Anal. Appl., 14:3 (2021), 258–268
Citation in format AMSBIB
\Bibitem{MakMak21}
\by A.~A.~Makarov, S.~V.~Makarova
\paper On filter banks in spline wavelet transform on a non-uniform grid
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 3
\pages 299--311
\mathnet{http://mi.mathnet.ru/sjvm782}
\crossref{https://doi.org/10.15372/SJNM20210306}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 3
\pages 258--268
\crossref{https://doi.org/10.1134/S199542392103006X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000692404100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113932165}
Linking options:
  • https://www.mathnet.ru/eng/sjvm782
  • https://www.mathnet.ru/eng/sjvm/v24/i3/p299
  • This publication is cited in the following 1 articles:
    1. A. A. Makarov, S. V. Makarova, “O liftingovykh modifikatsiyakh splain-veivletov s nesmeschennym i smeschennym nositelem”, Chislennye metody i voprosy organizatsii vychislenii. XXXVII, Zap. nauchn. sem. POMI, 534, POMI, SPb., 2024, 107–127  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :34
    References:27
    First page:6
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025