Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 3, Pages 289–298
DOI: https://doi.org/10.15372/SJNM20210305
(Mi sjvm781)
 

This article is cited in 1 scientific paper (total in 1 paper)

Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the Cramer method

S. K. Kydyralieva, S. N. Sklyara, A. B. Urdaletovab

a American University of Central Asia, Bishkek, Kyrgyzstan
b Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
Full-text PDF (534 kB) Citations (1)
References:
Abstract: For the numerical solution of a system of linear algebraic equations with a three-diagonal matrix, a recursive version of the Cramer method is proposed. This method does not require additional restrictions on the system matrix, similar to those formulated for the sweep method. The results of numerical experiments are presented on a large set of test problems, a comparative analysis of the effectiveness of the proposed methodology and the corresponding algorithms is given.
Key words: system of linear algebraic equations with a three-diagonal matrix, Cramer method, recursive algorithm, diagonal dominance, sweep method.
Received: 02.02.2020
Revised: 07.04.2020
Accepted: 14.04.2021
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 3, Pages 249–257
DOI: https://doi.org/10.1134/S1995423921030058
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: S. K. Kydyraliev, S. N. Sklyar, A. B. Urdaletova, “Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the Cramer method”, Sib. Zh. Vychisl. Mat., 24:3 (2021), 289–298; Num. Anal. Appl., 14:3 (2021), 249–257
Citation in format AMSBIB
\Bibitem{KydSklUrd21}
\by S.~K.~Kydyraliev, S.~N.~Sklyar, A.~B.~Urdaletova
\paper Solving of a system of linear algebraic equations with a three-diagonal matrix: a new look at the Cramer method
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 3
\pages 289--298
\mathnet{http://mi.mathnet.ru/sjvm781}
\crossref{https://doi.org/10.15372/SJNM20210305}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 3
\pages 249--257
\crossref{https://doi.org/10.1134/S1995423921030058}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000692404100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85113932423}
Linking options:
  • https://www.mathnet.ru/eng/sjvm781
  • https://www.mathnet.ru/eng/sjvm/v24/i3/p289
  • This publication is cited in the following 1 articles:
    1. Anarkul Urdaletova, Sergey Sklyar, Syrgak Kydyraliev, Elena Burova, Lecture Notes in Networks and Systems, 544, Intelligent Systems and Applications, 2023, 442  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :90
    References:42
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025