Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 1, Pages 63–76
DOI: https://doi.org/10.15372/SJNM20210105
(Mi sjvm765)
 

A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems

C. Xu

School of Mathematics and Statistics, Beihua University, Jilin, China
References:
Abstract: In this paper, we discuss a priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems. The state variables and co-state variables are approximated by a $P_0^2-P_1$ (velocity-pressure) pair and the control variable is approximated by piecewise constant functions. First, we derive a priori error estimates for the control variable, the state variables and the co-state variables. Then we obtain a superconvergence result for the control variable by using postprocessing projection operator.
Key words: elliptic equations, boundary control problems, a priori error estimates, superconvergence, $P_0^2-P_1$ mixed finite element methods.
Funding agency Grant number
National Natural Science Foundation of China 11601014
Natural Science Foundation of Jilin Province JJKH20190634KJ
This work was supported by National Natural Science Foundation of China (project no. 11601014), by Jilin Education Department Science and Technology Research Project (no. JJKH20190634KJ), and by Beihua University Youth Research and Innovation Team Development Project.
Received: 15.07.2019
Revised: 29.10.2019
Accepted: 21.10.2020
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 1, Pages 55–68
DOI: https://doi.org/10.1134/S1995423921010055
Bibliographic databases:
Document Type: Article
MSC: 49J20, 65N30
Language: Russian
Citation: C. Xu, “A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems”, Sib. Zh. Vychisl. Mat., 24:1 (2021), 63–76; Num. Anal. Appl., 14:1 (2021), 55–68
Citation in format AMSBIB
\Bibitem{Xu21}
\by C.~Xu
\paper A priori error estimates and superconvergence of $P_0^2-P_1$ mixed finite element methods for elliptic boundary control problems
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 1
\pages 63--76
\mathnet{http://mi.mathnet.ru/sjvm765}
\crossref{https://doi.org/10.15372/SJNM20210105}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 1
\pages 55--68
\crossref{https://doi.org/10.1134/S1995423921010055}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660034900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107535156}
Linking options:
  • https://www.mathnet.ru/eng/sjvm765
  • https://www.mathnet.ru/eng/sjvm/v24/i1/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:67
    Full-text PDF :14
    References:19
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024