Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2021, Volume 24, Number 1, Pages 47–61
DOI: https://doi.org/10.15372/SJNM20210104
(Mi sjvm764)
 

Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative

N. Gupta, J. P. Jaiswal

Department of Mathematics, Maulana Azad National Institute of Technology, Bhopal, India
References:
Abstract: In the present discussion, we analyze the semilocal convergence of a class of modified Chebyshev-Halley methods under two different sets of assumptions. In the first set, we just assumed the bound of the second order Fréchet derivative in lieu of the third order. In the second set of hypotheses, the bound of the norm of the third order Fréchet derivative is assumed at initial iterate preferably supposed it earlier on the domain of the given operator along with fulfillment of the local $\omega$-continuity in order to prove the convergence, existence and uniqueness followed by a priori error bound. Two numerical experiments strongly support the theory included in this paper.
Key words: Banach space, semilocal convergence, $\omega$-continuity condition, Chebyshev-Halley method, error bound.
Funding agency Grant number
Science and Engineering Research Board YSS/2015/001507
This research was supported by Science and Engineering Research Board (SERB), New Delhi, India under the Start-up-Grant (young scientists) scheme (ref. no.В YSS/2015/001507).
Received: 20.06.2018
Revised: 07.12.2019
Accepted: 21.10.2020
English version:
Numerical Analysis and Applications, 2021, Volume 14, Issue 1, Pages 40–54
DOI: https://doi.org/10.1134/S1995423921010043
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. Gupta, J. P. Jaiswal, “Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative”, Sib. Zh. Vychisl. Mat., 24:1 (2021), 47–61; Num. Anal. Appl., 14:1 (2021), 40–54
Citation in format AMSBIB
\Bibitem{GupJai21}
\by N.~Gupta, J.~P.~Jaiswal
\paper Semilocal convergence of Modified Chebyshev-Halley method for nonlinear operators in case of unbounded third derivative
\jour Sib. Zh. Vychisl. Mat.
\yr 2021
\vol 24
\issue 1
\pages 47--61
\mathnet{http://mi.mathnet.ru/sjvm764}
\crossref{https://doi.org/10.15372/SJNM20210104}
\transl
\jour Num. Anal. Appl.
\yr 2021
\vol 14
\issue 1
\pages 40--54
\crossref{https://doi.org/10.1134/S1995423921010043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000660034900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85107486431}
Linking options:
  • https://www.mathnet.ru/eng/sjvm764
  • https://www.mathnet.ru/eng/sjvm/v24/i1/p47
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:104
    Full-text PDF :24
    References:21
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024