|
This article is cited in 1 scientific paper (total in 1 paper)
Convergence of numerical spectral models of the sea surface undulation
K. V. Litvenkoa, S. M. Prigarinba a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch,
Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
Abstract:
This paper deals with the convergence of spectral and conditional spectral models that are used to simulate a stochastic structure of the sea surface undulation and rogue ocean waves. We study the convergence of spatial-temporal and spatial models.
Key words:
simulation of random fields, spectral models, convergence, sea surface simulation, extreme ocean waves, rogue waves.
Received: 12.09.2018 Revised: 05.03.2019 Accepted: 15.10.2019
Citation:
K. V. Litvenko, S. M. Prigarin, “Convergence of numerical spectral models of the sea surface undulation”, Sib. Zh. Vychisl. Mat., 23:1 (2020), 53–67; Num. Anal. Appl., 13:1 (2020), 45–56
Linking options:
https://www.mathnet.ru/eng/sjvm732 https://www.mathnet.ru/eng/sjvm/v23/i1/p53
|
Statistics & downloads: |
Abstract page: | 138 | Full-text PDF : | 67 | References: | 31 | First page: | 3 |
|