Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2020, Volume 23, Number 1, Pages 39–51
DOI: https://doi.org/10.15372/SJNM20200103
(Mi sjvm731)
 

$(m, k)$-schemes for stiff systems of ODEs and DAEs

A. I. Levykinab, A. E. Novikovc, E. A. Novikovcd

a Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Lavrent’eva 6, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia
c Siberian Federal University, pr. Svobodnyi 79, Krasnoyarsk, 660041 Russia
d Institute of Computational Modeling, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/44, Krasnoyarsk, 660036 Russia
References:
Abstract: This paper deals with the derivation of the optimal form of the Rosenbrock-type methods in terms of the number of non-zero parameters and computational costs per step. A technique of obtaining $(m, k)$-methods from the well-known Rosenbrock-type methods is justified. There are given formulas for the $(m, k)$-schemes parameters transformation for their two canonical representations and obtaining the form of a stability function. The authors have developed $L$-stable $(3, 2)$-method of order $3$ which requires two evaluations of a function: one evaluation of the Jacobian matrix and one $LU$-decomposition per step. Moreover, in this paper there is formulated an integration algorithm of the alternating step size based on $(3, 2)$-method. It provides the numerical solution for both explicit and implicit systems of ODEs. The numerical results confirming the efficiency of the new algorithm are given.
Key words: Rosenbrock-type methods, differential-algebraic equations, stiff systems of ODEs.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-01513_а
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0315-2019-0002
This work was supported by the Russian Foundation for Basic Research (project no.В 17-07-01513В A). The work of the first author was supported by ICM&MG SB RAS (state assignment no.В 0315-2019-0002).
Received: 14.01.2019
Revised: 04.04.2019
Accepted: 15.10.2019
English version:
Numerical Analysis and Applications, 2020, Volume 13, Issue 1, Pages 34–44
DOI: https://doi.org/10.1134/S1995423920010036
Bibliographic databases:
Document Type: Article
UDC: 519.622
Language: Russian
Citation: A. I. Levykin, A. E. Novikov, E. A. Novikov, “$(m, k)$-schemes for stiff systems of ODEs and DAEs”, Sib. Zh. Vychisl. Mat., 23:1 (2020), 39–51; Num. Anal. Appl., 13:1 (2020), 34–44
Citation in format AMSBIB
\Bibitem{LevNovNov20}
\by A.~I.~Levykin, A.~E.~Novikov, E.~A.~Novikov
\paper $(m, k)$-schemes for stiff systems of ODEs and DAEs
\jour Sib. Zh. Vychisl. Mat.
\yr 2020
\vol 23
\issue 1
\pages 39--51
\mathnet{http://mi.mathnet.ru/sjvm731}
\crossref{https://doi.org/10.15372/SJNM20200103}
\transl
\jour Num. Anal. Appl.
\yr 2020
\vol 13
\issue 1
\pages 34--44
\crossref{https://doi.org/10.1134/S1995423920010036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000516579100003}
Linking options:
  • https://www.mathnet.ru/eng/sjvm731
  • https://www.mathnet.ru/eng/sjvm/v23/i1/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :28
    References:40
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024