Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2018, Volume 21, Number 1, Pages 99–116
DOI: https://doi.org/10.15372/SJNM20180107
(Mi sjvm671)
 

This article is cited in 21 scientific papers (total in 21 papers)

Consistent numerical schemes for solving nonlinear inverse source problems with the gradient-type algorithms and the Newton–Kantorovich methods

A. V. Penenko

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, 6 Lavrentiev av., Novosibirsk, 630090, Russia
References:
Abstract: The algorithms of solving the inverse source problem for systems of the production-destruction equations are considered. Consistent in the sense of the Lagrangian identity numerical schemes for solving direct and conjugate problems have been built. With the adjoint equations, the sensitivity operator and its discrete analogue have been constructed. It links the measured values perturbations with the perturbations of the model parameters. This operator transforms the inverse problem to a quasilinear form and allows applying the Newton–Kantorovich methods to it. The paper provides a numerical comparison of the gradient algorithms based on the consistent and inconsistent numerical schemes and the Newton–Kantorovich algorithm applied to solving the inverse source problem for the nonlinear Lorenz model.
Key words: inverse source problem, Newton-Kantorovich method, gradient-type algorithm, adjoint equations, sensitivity operator, consistent numerical schemes.
Received: 27.03.2017
Revised: 14.06.2017
English version:
Numerical Analysis and Applications, 2018, Volume 11, Issue 1, Pages 73–88
DOI: https://doi.org/10.1134/S1995423918010081
Bibliographic databases:
Document Type: Article
UDC: 517.988+519.62
Language: Russian
Citation: A. V. Penenko, “Consistent numerical schemes for solving nonlinear inverse source problems with the gradient-type algorithms and the Newton–Kantorovich methods”, Sib. Zh. Vychisl. Mat., 21:1 (2018), 99–116; Num. Anal. Appl., 11:1 (2018), 73–88
Citation in format AMSBIB
\Bibitem{Pen18}
\by A.~V.~Penenko
\paper Consistent numerical schemes for solving nonlinear inverse source problems with the gradient-type algorithms and the Newton--Kantorovich methods
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 1
\pages 99--116
\mathnet{http://mi.mathnet.ru/sjvm671}
\crossref{https://doi.org/10.15372/SJNM20180107}
\elib{https://elibrary.ru/item.asp?id=32466483}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 1
\pages 73--88
\crossref{https://doi.org/10.1134/S1995423918010081}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427431900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043701579}
Linking options:
  • https://www.mathnet.ru/eng/sjvm671
  • https://www.mathnet.ru/eng/sjvm/v21/i1/p99
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:353
    Full-text PDF :87
    References:40
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024