Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2018, Volume 21, Number 1, Pages 83–97
DOI: https://doi.org/10.15372/SJNM20180106
(Mi sjvm670)
 

This article is cited in 1 scientific paper (total in 1 paper)

The properties of difference schemes on oblique stencils for the hyperbolic equations

V. I. Paasonenab

a Institute of Computational Technologies, SB RAS,6 Lavrentiev av., Novosibirsk, 630090, Russia
b Novosibirsk State University, 2 Pirogova str., Novosibirsk, 630090, Russia
Full-text PDF (685 kB) Citations (1)
References:
Abstract: In this paper, we study various difference schemes on oblique stencils, i.e., the schemes using different space grids on different time levels. Such schemes can be useful when solving boundary value problems with moving boundaries and when using the regular grids of a non-standard structure (for example, triangular or cellular) and, also, when applying the adaptive methods.
To study the stability, we use the analysis of First Differential Approximation of finite difference schemes and the dispersion analysis. We study the meaning of the stability conditions as constraints on the geometric location of stencil elements with respect to the characteristics of the equation. In addition, we compare our results with the geometric interpretation of the stability of classical schemes. The paper also presents the generalization of oblique schemes in the case of the quasi-linear equation of transport and numerical experiments for these schemes.
Key words: non-uniform grid, adaptive grid, oblique stencil, moving grid, compact scheme.
Received: 12.04.2017
Revised: 13.06.2017
English version:
Numerical Analysis and Applications, 2018, Volume 11, Issue 1, Pages 60–72
DOI: https://doi.org/10.1134/S199542391801007X
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: V. I. Paasonen, “The properties of difference schemes on oblique stencils for the hyperbolic equations”, Sib. Zh. Vychisl. Mat., 21:1 (2018), 83–97; Num. Anal. Appl., 11:1 (2018), 60–72
Citation in format AMSBIB
\Bibitem{Paa18}
\by V.~I.~Paasonen
\paper The properties of difference schemes on oblique stencils for the hyperbolic equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2018
\vol 21
\issue 1
\pages 83--97
\mathnet{http://mi.mathnet.ru/sjvm670}
\crossref{https://doi.org/10.15372/SJNM20180106}
\elib{https://elibrary.ru/item.asp?id=32466482}
\transl
\jour Num. Anal. Appl.
\yr 2018
\vol 11
\issue 1
\pages 60--72
\crossref{https://doi.org/10.1134/S199542391801007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000427431900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85043685190}
Linking options:
  • https://www.mathnet.ru/eng/sjvm670
  • https://www.mathnet.ru/eng/sjvm/v21/i1/p83
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025