Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 2, Pages 215–222
DOI: https://doi.org/10.15372/SJNM20170208
(Mi sjvm647)
 

This article is cited in 12 scientific papers (total in 12 papers)

Discrete maximum-norm stability of a linearized second order finite difference scheme for Allen–Cahn equation

T. Hou, K. Wang, Y. Xiong, X. Xiao, Sh. Zhang

School of Mathematics and Statistics, Beihua University, Jilin, 132013, China
References:
Abstract: In this paper, we use finite difference methods for solving the Allen–Cahn equation which contains small perturbation parameters and strong nonlinearity. We consider a linearized second-order three level scheme in time and a second-order finite difference approach in space, and we establish discrete boundedness stability in maximum norm: if the initial data is bounded by 1, then the numerical solutions in later times can also be bounded uniformly by 1. We will show that the main result can be obtained under certain.
Key words: Allen–Cahn equation, finite difference method, discrete boundedness stability, maximum norm.
Funding agency Grant number
National Natural Science Foundation of China 11526036
11601014
Natural Science Foundation of Jilin Province 20160520108JH
Department of Education of Jilin Province 201646
Received: 02.05.2016
Revised: 08.10.2016
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 2, Pages 177–183
DOI: https://doi.org/10.1134/S1995423917020082
Bibliographic databases:
Document Type: Article
MSC: 49M25, 65M06
Language: Russian
Citation: T. Hou, K. Wang, Y. Xiong, X. Xiao, Sh. Zhang, “Discrete maximum-norm stability of a linearized second order finite difference scheme for Allen–Cahn equation”, Sib. Zh. Vychisl. Mat., 20:2 (2017), 215–222; Num. Anal. Appl., 10:2 (2017), 177–183
Citation in format AMSBIB
\Bibitem{HouWanXio17}
\by T.~Hou, K.~Wang, Y.~Xiong, X.~Xiao, Sh.~Zhang
\paper Discrete maximum-norm stability of a~linearized second order finite difference scheme for Allen--Cahn equation
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 2
\pages 215--222
\mathnet{http://mi.mathnet.ru/sjvm647}
\crossref{https://doi.org/10.15372/SJNM20170208}
\elib{https://elibrary.ru/item.asp?id=29160412}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 2
\pages 177--183
\crossref{https://doi.org/10.1134/S1995423917020082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405833000008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020220497}
Linking options:
  • https://www.mathnet.ru/eng/sjvm647
  • https://www.mathnet.ru/eng/sjvm/v20/i2/p215
  • This publication is cited in the following 12 articles:
    1. Min Li, Wenyi Li, Zirui Du, Tianliang Hou, “A maximum bound principle preserving CN/AB finite difference scheme for Riesz space-fractional Allen-Cahn equations with logarithmic free energy”, Adv Cont Discr Mod, 2025:1 (2025)  crossref
    2. Saisai Wang, Guang-an Zou, Bo Wang, “An energy-stable least-squares finite element method for solving the Allen–Cahn equation”, International Journal of Computer Mathematics, 2024, 1  crossref
    3. Junxiang Yang, Yibao Li, Chaeyoung Lee, Yongho Choi, Junseok Kim, “Fast evolution numerical method for the Allen–Cahn equation”, Journal of King Saud University - Science, 35:1 (2023), 102430  crossref
    4. Zhengyuan Song, Dingqi Li, Dongmei Wang, Huanrong Li, “A modified Crank-Nicolson finite difference method preserving maximum-principle for the phase-field model”, Journal of Mathematical Analysis and Applications, 526:2 (2023), 127271  crossref
    5. Yingcong Zhou, Tianliang Hou, “Two-grid algorithm of lumped mass finite element approximation for Allen-Cahn equations”, Computers & Mathematics with Applications, 152 (2023), 46  crossref
    6. Huanrong Li, Dongmei Wang, “Numerical analysis of energy-stable Crank-Nicolson finite difference schemes for the phase-field equation”, Journal of Mathematical Analysis and Applications, 514:2 (2022), 126169  crossref
    7. Dingwen Deng, Zilin Zhao, “Efficiently energy-dissipation-preserving ADI methods for solving two-dimensional nonlinear Allen-Cahn equation”, Computers & Mathematics with Applications, 128 (2022), 249  crossref
    8. 树华 林, “Discrete Maximum Principle and Energy Stability Analysis of Du Fort-Frankel Scheme for 1D Allen-Cahn Equation”, PM, 12:09 (2022), 1501  crossref
    9. M. Olshanskii, X. Xu, V. Yushutin, “A finite element method for Allen-Cahn equation on deforming surface”, Comput. Math. Appl., 90 (2021), 148–158  crossref  mathscinet  isi  scopus
    10. D. Jeong, Y. Li, Y. Choi, Ch. Lee, J. Yang, J. Kim, “A practical adaptive grid method for the Allen-Cahn equation”, Physica A, 573 (2021), 125975  crossref  mathscinet  isi  scopus
    11. T. Hou, H. Leng, “Numerical analysis of a stabilized crank-nicolson/adams-bashforth finite difference scheme for allen-cahn equations”, Appl. Math. Lett., 102 (2020), 106150  crossref  mathscinet  zmath  isi  scopus
    12. V. Yushutin, A. Quaini, Sh. Majd, M. Olshanskii, “A computational study of lateral phase separation in biological membranes”, Int. J. Numer. Meth. Biomed., 35:3 (2019), e3181  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :65
    References:54
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025