Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2017, Volume 20, Number 2, Pages 201–213
DOI: https://doi.org/10.15372/SJNM20170207
(Mi sjvm646)
 

This article is cited in 16 scientific papers (total in 16 papers)

Numerical solution of second order one dimensional hyperbolic equation by exponential B-spline collocation method

Swarn Singh, Suruchi Singh, R. Arora

University of Delhi, New Delhi, 110007, India
References:
Abstract: In this paper, we propose a method based on collocation of exponential B-splines to obtain numerical solution of nonlinear second order one dimensional hyperbolic equation subject to appropriate initial and Dirichlet boundary conditions. The method is a combination of B-spline collocation method in space and two stage, second order strong-stability-preserving Runge–Kutta method in time. The proposed method is shown to be unconditionally stable. The efficiency and accuracy of the method are successfully described by applying the method to a few test problems.
Key words: damped wave equation, exponential B-spline method, SSPRK(2,2), telegraphic equation, tri-diagonal solver, unconditionally stable method.
Received: 20.04.2016
Revised: 10.11.2016
English version:
Numerical Analysis and Applications, 2017, Volume 10, Issue 2, Pages 164–176
DOI: https://doi.org/10.1134/S1995423917020070
Bibliographic databases:
Document Type: Article
MSC: 39A10
Language: Russian
Citation: Swarn Singh, Suruchi Singh, R. Arora, “Numerical solution of second order one dimensional hyperbolic equation by exponential B-spline collocation method”, Sib. Zh. Vychisl. Mat., 20:2 (2017), 201–213; Num. Anal. Appl., 10:2 (2017), 164–176
Citation in format AMSBIB
\Bibitem{SinSinAro17}
\by Swarn~Singh, Suruchi~Singh, R.~Arora
\paper Numerical solution of second order one dimensional hyperbolic equation by exponential B-spline collocation method
\jour Sib. Zh. Vychisl. Mat.
\yr 2017
\vol 20
\issue 2
\pages 201--213
\mathnet{http://mi.mathnet.ru/sjvm646}
\crossref{https://doi.org/10.15372/SJNM20170207}
\elib{https://elibrary.ru/item.asp?id=29160411}
\transl
\jour Num. Anal. Appl.
\yr 2017
\vol 10
\issue 2
\pages 164--176
\crossref{https://doi.org/10.1134/S1995423917020070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000405833000007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85020235268}
Linking options:
  • https://www.mathnet.ru/eng/sjvm646
  • https://www.mathnet.ru/eng/sjvm/v20/i2/p201
  • This publication is cited in the following 16 articles:
    1. Seherish Naz Khalid Ali Khan, Md Yushalify Misro, 2023 INTERNATIONAL CONFERENCE ON CIVIL, ARCHITECTURAL, AND ENVIRONMENTAL ENGINEERING (ICCAEE 2023), 3203, 2023 INTERNATIONAL CONFERENCE ON CIVIL, ARCHITECTURAL, AND ENVIRONMENTAL ENGINEERING (ICCAEE 2023), 2024, 030019  crossref
    2. Suruchi Singh, Swarn Singh, Anu Aggarwal, “A new spline technique for the time fractional diffusion-wave equation”, MethodsX, 10 (2023), 102007  crossref
    3. Emre K{\i}rlı, “A novel B-spline collocation method for Hyperbolic Telegraph equation”, MATH, 8:5 (2023), 11015  crossref
    4. Suruchi Singh, Swarn Singh, Anu Aggarwal, “Cubic B-spline method for non-linear sine-Gordon equation”, Comp. Appl. Math., 41:8 (2022)  crossref
    5. Ersoy Hepson O., “a Quartic Trigonometric Tension B-Spline Algorithm For Nonlinear Partial Differential Equation System”, Eng. Comput., 38:5 (2021), 2293–2311  crossref  isi  scopus
    6. O. E. Hepson, I. Dag, “An exponential cubic B-spline algorithm for solving the nonlinear coupled Burgers' equation”, Comput. Methods Differ. Equ., 9:4 (2021), 1109–1127  crossref  mathscinet  isi
    7. Singh S., Singh S., Aggarwal A., “Fourth-Order Cubic B-Spline Collocation Method For Hyperbolic Telegraph Equation”, Math. Sci., 2021  crossref  isi  scopus
    8. Brajesh Kumar Singh, Jai Prakash Shukla, Mukesh Gupta, “Study of One Dimensional Hyperbolic Telegraph Equation Via a Hybrid Cubic B-Spline Differential Quadrature Method”, Int. J. Appl. Comput. Math, 7:1 (2021)  crossref
    9. U. Shon, M. H. Kim, D. Y. Lee, S. H. Kim, B. Ch. Park, “The effect of intradermal botulinum toxin on androgenetic alopecia and its possible mechanism”, J. Am. Acad. Dermatol., 83:6 (2020), 1838–1839  crossref  isi  scopus
    10. R. Carloni, S. Gandolfi, F. Postel, N. Bertheuil, L. Pechevy, “Reply to: “the effect of intradermal botulinum toxin on androgenetic alopecia and its possible mechanism””, J. Am. Acad. Dermatol., 83:6 (2020), E435–E436  crossref  isi  scopus
    11. B. Ch. Park, “Author's reply to the comment on: “the effect of intradermal botulinum toxin on androgenetic alopecia and its possible mechanism””, J. Am. Acad. Dermatol., 83:6 (2020), E437  crossref  isi  scopus
    12. Yu. Wang, H. Zhang, Q. Zheng, K. Tang, R. Fang, Q. Sun, “Botulinum toxin as a double-edged sword in alopecia: a systematic review”, J. Cosmet. Dermatol., 19:10 (2020), 2560–2565  crossref  isi  scopus
    13. T. S. Alster, I. S. Harrison, “Alternative clinical indications of botulinum toxin”, Am. J. Clin. Dermatol., 21:6 (2020), 855–880  crossref  isi  scopus
    14. L. Garcia-Rodriguez, L. M. Thain, J. H. Spiegel, “Scalp advancement for transgender women: closing the gap”, Laryngoscope, 130:6 (2020), 1431–1435  crossref  isi  scopus
    15. I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “Generalized spline interpolation of functions with large gradients in boundary layers”, Comput. Math. Math. Phys., 60:3 (2020), 411–426  mathnet  crossref  crossref  isi  elib
    16. S. Singh, S. Singh, R. Arora, “An unconditionally stable numerical method for two-dimensional hyperbolic equations”, East Asian J. Appl. Math., 9:1 (2019), 195–211  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:468
    Full-text PDF :154
    References:56
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025