Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2015, Volume 18, Number 3, Pages 337–347
DOI: https://doi.org/10.15372/SJNM20150308
(Mi sjvm586)
 

This article is cited in 4 scientific papers (total in 4 papers)

Solving the traveling salesman problem using a recurrent neural network

M. S. Tarkov

Rzhanov Institute of Semiconductor Physics of Siberian Branch of the Russian Academy of Sciences, 13 Lermontov str., Irkutsk, 664033, Russia
Full-text PDF (530 kB) Citations (4)
References:
Abstract: A new algorithm (NWTA-algorithm) for solving the traveling salesman problem (TSP) is proposed. The algorithm is based on the use of the Hopfield recurrent neural network, the WTA method (“Winner takes all”) for the cycle formation, and $2$-opt optimization method. A special feature of the algorithm proposed is in the use of the method of partial (prefix) sums to accelerate the solution of the system of the Hopfield network equations. For attaining additional acceleration, the parallelization of the algorithm proposed is performed on GPU with the CUDA technology. Several examples from the TSPLIB library with the number of cities from 51 to 2,392 show that the algorithm proposed finds approximate solutions of the TSP (a relative increase in the length of the route with respect to the optimum is $0.03\div0.14$). With a large number of cities (130 and more) the NWTA-algorithm running duration on the CPU is in $4\div24$ times less than the duration of the heuristic LKH algorithm giving optimal solutions for all TSPLIB examples.
Key words: traveling salesman problem, recurrent neural Hopfield network, $2$-opt, CUDA technology, LKH algorithm.
Received: 21.07.2014
Revised: 19.08.2014
English version:
Numerical Analysis and Applications, 2015, Volume 8, Issue 3, Pages 275–283
DOI: https://doi.org/10.1134/S1995423915030088
Bibliographic databases:
Document Type: Article
UDC: 004.032.26(06)
Language: Russian
Citation: M. S. Tarkov, “Solving the traveling salesman problem using a recurrent neural network”, Sib. Zh. Vychisl. Mat., 18:3 (2015), 337–347; Num. Anal. Appl., 8:3 (2015), 275–283
Citation in format AMSBIB
\Bibitem{Tar15}
\by M.~S.~Tarkov
\paper Solving the traveling salesman problem using a~recurrent neural network
\jour Sib. Zh. Vychisl. Mat.
\yr 2015
\vol 18
\issue 3
\pages 337--347
\mathnet{http://mi.mathnet.ru/sjvm586}
\crossref{https://doi.org/10.15372/SJNM20150308}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492618}
\elib{https://elibrary.ru/item.asp?id=23907305}
\transl
\jour Num. Anal. Appl.
\yr 2015
\vol 8
\issue 3
\pages 275--283
\crossref{https://doi.org/10.1134/S1995423915030088}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938591072}
Linking options:
  • https://www.mathnet.ru/eng/sjvm586
  • https://www.mathnet.ru/eng/sjvm/v18/i3/p337
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025