Abstract:
We consider an inverse boundary value problem of heat conduction. To solve it, we propose a new approach based on the Laplace transform. This approach allows us to confine the original problem to solving the Volterra equations of the first kind. We have developed algorithms of the numerical solution to the resulting integral equations. The algorithms developed are based on the application of the product integration method and the quadrature of middle rectangles. A series of test calculations were performed to test the efficiency of the numerical methods.
Key words:
Volterra integral equations, numerical solution, product integration method.
Citation:
S. V. Solodusha, N. M. Yaparova, “A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind”, Sib. Zh. Vychisl. Mat., 18:3 (2015), 327–335; Num. Anal. Appl., 8:3 (2015), 267–274
\Bibitem{SolYap15}
\by S.~V.~Solodusha, N.~M.~Yaparova
\paper A numerical solution of an inverse boundary value problem of heat conduction using the Volterra equations of the first kind
\jour Sib. Zh. Vychisl. Mat.
\yr 2015
\vol 18
\issue 3
\pages 327--335
\mathnet{http://mi.mathnet.ru/sjvm585}
\crossref{https://doi.org/10.15372/SJNM20150307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3492617}
\elib{https://elibrary.ru/item.asp?id=23907304}
\transl
\jour Num. Anal. Appl.
\yr 2015
\vol 8
\issue 3
\pages 267--274
\crossref{https://doi.org/10.1134/S1995423915030076}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84938576574}
Linking options:
https://www.mathnet.ru/eng/sjvm585
https://www.mathnet.ru/eng/sjvm/v18/i3/p327
This publication is cited in the following 14 articles:
S. B. Sorokin, “Difference method for calculating the heat flux at an inaccessible boundary in the problem of heat conduction”, J. Appl. Industr. Math., 17:3 (2023), 651–663
Volodymyr Fedorchuk, Vitalii Ivaniuk, Vadym Ponedilok, 2022 IEEE 4th International Conference on Advanced Trends in Information Theory (ATIT), 2022, 19
B.S. Ablabekov, A.T. Mukanbetova, “ON SOLVABILITY OF THE BOUNDARY INVERSE PROBLEM FOR THE HEAT CONDUCTIVITY EQUATION”, The herald of KSUCTA n.a.N.Isanov, 2021, no. 4-2021, 670
Andriy Verlan, Volodymyr Fedorchuk, Vitalii Ivaniuk, Jo Sterten, Advances in Intelligent Systems and Computing, 1323, 11th World Conference “Intelligent System for Industrial Automation” (WCIS-2020), 2021, 18
A. L. Karchevsky, “Numerical solving the heat equation with data on a time-like boundary for the heated thin foil technique”, Eurasian J. Math. Comput. Appl., 8:4 (2020), 4–14
Elena Tabarintseva, Communications in Computer and Information Science, 1090, Mathematical Optimization Theory and Operations Research, 2019, 578
A. L. Karchevsky, “Development of the heated thin foil technique for investigating nonstationary transfer processes”, Interfacial Phenom. Heat Transf., 6:3 (2018), 179–185
E. V. Tabarintseva, “On approximate solution of inverse problem for nonlinear equation with discontinuous coefficient”, 2018 Global Smart Industry Conference (GloSIC), IEEE, 2018
N. M. Yaparova, A. D. Drozin, “Method for internal heat source identification in a rod based on indirect temperature measurements”, 2017 2nd International Ural Conference on Measurements (URALCON), IEEE, 2017, 93–98
E. V. Tabarintseva, “On approximate solution of non-linear inverse problem”, 2017 2nd International Ural Conference on Measurements (URALCON), IEEE, 2017, 99–106
S. V. Solodusha, I. V. Mokry, “A numerical solution of one class of Volterra integral equations of the first kind in terms of the machine arithmetic features”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 9:3 (2016), 119–129
N. M. Yaparova, “Chislennyi metod resheniya obratnoi zadachi s neizvestnymi nachalnymi usloviyami dlya nelineinogo parabolicheskogo uravneniya”, Vestn. YuUrGU. Ser. Vych. matem. inform., 5:2 (2016), 43–58
N. M. Yaparova, “Metod resheniya obratnoi zadachi identifikatsii funktsii istochnika s ispolzovaniem preobrazovaniya Laplasa”, Vestn. YuUrGU. Ser. Vych. matem. inform., 5:3 (2016), 20–35
M. Joachimiak, A. Frackowiak, M. Cialkowski, “Solution of inverse heat conduction equation with the use of Chebyshev polynomials”, Arch. Thermodyn., 37:4 (2016), 73–88