Abstract:
The basic models of problems in continuum mechanics are boundary value problems for the time-dependent convection-diffusion-reaction equations. For their study, various numerical methods are involved. After applying the finite difference, finite element or finite volume approximation in space, we arrive at the Cauchy problem for systems of ordinary differential equations whose main features are associated with the asymmetry of the operator and its indefinite. The explicit-implicit approximation time is conventionally used in constructing splitting schemes in terms of physical processes, when separated by convection and diffusion transfers, the reaction process. In this paper, unconditionally stable schemes for unsteady convection-diffusion-reaction equations are used, when explicit-implicit approximations are applied in splitting the operator reaction. An example of a model 2D problem in the rectangle is presented.
Key words:
convection-diffusion-reaction problems, explicit-implicit scheme, stability of difference schemes.
Citation:
P. N. Vabishchevich, M. V. Vasil'eva, “Explicit-implicit schemes for convection-diffusion-reaction problems”, Sib. Zh. Vychisl. Mat., 15:4 (2012), 359–369; Num. Anal. Appl., 5:4 (2012), 297–306
This publication is cited in the following 22 articles:
Xueyu QIN, Jian YU, Xin ZHANG, Zhenhua JIANG, Chao YAN, “Novel adaptive IMEX two-step Runge-Kutta temporal discretization methods for unsteady flows”, Chinese Journal of Aeronautics, 2025, 103442
Maksim I. Ivanov, Igor A. Kremer, Yuri M. Laevsky, “Non-isothermal filtration problem: Two-temperature computational model”, Journal of Computational Physics, 531 (2025), 113941
Maksim I. Ivanov, Igor A. Kremer, Yuri M. Laevsky, “Explicit–implicit schemes for non-isothermal filtration problem: Single-temperature model”, Journal of Computational and Applied Mathematics, 440 (2024), 115639
Uygulaana Kalachikova, Dmitry Ammosov, “Advancing wave equation analysis in dual-continuum systems: A partial learning approach with discrete empirical interpolation and deep neural networks”, Journal of Computational and Applied Mathematics, 443 (2024), 115755
Olga O. Kozeeva, Igor V. Chukhraev, 2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2024, 1
Maria Vasilyeva, Richard B. Coffin, Ingo Pecher, “Decoupled multiscale numerical approach for reactive transport in marine sediment column”, Computer Methods in Applied Mechanics and Engineering, 428 (2024), 117087
Maria Vasilyeva, “Implicit-Explicit schemes for decoupling multicontinuum problems in porous media”, Journal of Computational Physics, 519 (2024), 113425
S. I. Bezrodnykh, S. V. Pikulin, “Numerical-Analytical Method for the Burgers Equation with a Periodic Boundary Condition”, J Math Sci, 2024
Maria Vasilyeva, Sergei Stepanov, Alexey Sadovski, Stephen Henry, “Uncoupling Techniques for Multispecies Diffusion–Reaction Model”, Computation, 11:8 (2023), 153
Maria Vasilyeva, Alexey Sadovski, D. Palaniappan, “Multiscale solver for multi-component reaction–diffusion systems in heterogeneous media”, Journal of Computational and Applied Mathematics, 427 (2023), 115150
Youwen Wang, Maria Vasilyeva, Alexey Sadovski, 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES, 2872, 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES, 2023, 120083
Aleksei Tyrylgin, Sergei Stepanov, Dmitry Ammosov, Aleksandr Grigorev, Maria Vasilyeva, “Partial Learning Using Partially Explicit Discretization for Multicontinuum/Multiscale Problems with Limited Observation: Dual Continuum Heterogeneous Poroelastic Media Simulation”, Mathematics, 10:15 (2022), 2629
Khayitkulov B.Kh., “Finite-Difference Method For Solving Non-Stationary Problems of Convection-Diffusion Control”, Int. J. Geotech. Earthq., 2021, no. 57, 45–52
Juncu G., Nicola A., Popa C., “Splitting Methods For the Numerical Solution of Multi-Component Mass Transfer Problems”, Math. Comput. Simul., 152 (2018), 1–14
V. I. Vasil'ev, M. V. Vasil'eva, Yu. M. Laevskii, T. S. Timofeeva, “Numerical simulation of two-phase fluid filtration in heterogeneous media”, J. Appl. Industr. Math., 11:2 (2017), 289–295
Kh. M. Gamzaev, “Chislennyi metod resheniya koeffitsientnoi obratnoi zadachi dlya uravneniya diffuzii–konvektsii–reaktsii”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2017, no. 50, 67–78
U. S. Gavrileva, V. N. Alekseev, M. V. Vasileva, “Techenie i perenos v perforirovannykh i treschinovatykh oblastyakh s neodnorodnymi granichnymi usloviyami Robina”, Matematicheskie zametki SVFU, 24:3 (2017), 65–77
L. A. Krukier, B. L. Krukier, Yu-Mei Huang, “The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient”, Num. Anal. Appl., 9:1 (2016), 57–65
M. V. Vasileva, V. I. Vasilev, T. S. Timofeeva, “Chislennoe reshenie metodom konechnykh elementov zadach diffuzionnogo i konvektivnogo perenosa v silno geterogennykh poristykh sredakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 158, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2016, 243–261
Sivtsev P.V., Vabishchevich P.N., Vasilyeva M.V., “Numerical Simulation of Thermoelasticity Problems on High Performance Computing Systems”, Finite Difference Methods, Theory and Applications, Lecture Notes in Computer Science, 9045, eds. Dimov I., Farago I., Vulkov L., Springer-Verlag Berlin, 2015, 364–370