Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2012, Volume 15, Number 4, Pages 359–369 (Mi sjvm486)  

This article is cited in 22 scientific papers (total in 22 papers)

Explicit-implicit schemes for convection-diffusion-reaction problems

P. N. Vabishchevicha, M. V. Vasil'evab

a Nuclear Safety Institute, RAS, Moscow
b North-Eastern Federal University named after M. K. Amosov, Yakutsk
References:
Abstract: The basic models of problems in continuum mechanics are boundary value problems for the time-dependent convection-diffusion-reaction equations. For their study, various numerical methods are involved. After applying the finite difference, finite element or finite volume approximation in space, we arrive at the Cauchy problem for systems of ordinary differential equations whose main features are associated with the asymmetry of the operator and its indefinite. The explicit-implicit approximation time is conventionally used in constructing splitting schemes in terms of physical processes, when separated by convection and diffusion transfers, the reaction process. In this paper, unconditionally stable schemes for unsteady convection-diffusion-reaction equations are used, when explicit-implicit approximations are applied in splitting the operator reaction. An example of a model 2D problem in the rectangle is presented.
Key words: convection-diffusion-reaction problems, explicit-implicit scheme, stability of difference schemes.
Received: 11.11.2011
English version:
Numerical Analysis and Applications, 2012, Volume 5, Issue 4, Pages 297–306
DOI: https://doi.org/10.1134/S1995423912040027
Bibliographic databases:
Document Type: Article
UDC: 519.63+517.958
Language: Russian
Citation: P. N. Vabishchevich, M. V. Vasil'eva, “Explicit-implicit schemes for convection-diffusion-reaction problems”, Sib. Zh. Vychisl. Mat., 15:4 (2012), 359–369; Num. Anal. Appl., 5:4 (2012), 297–306
Citation in format AMSBIB
\Bibitem{VabVas12}
\by P.~N.~Vabishchevich, M.~V.~Vasil'eva
\paper Explicit-implicit schemes for convection-diffusion-reaction problems
\jour Sib. Zh. Vychisl. Mat.
\yr 2012
\vol 15
\issue 4
\pages 359--369
\mathnet{http://mi.mathnet.ru/sjvm486}
\elib{https://elibrary.ru/item.asp?id=20495039}
\transl
\jour Num. Anal. Appl.
\yr 2012
\vol 5
\issue 4
\pages 297--306
\crossref{https://doi.org/10.1134/S1995423912040027}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84870458396}
Linking options:
  • https://www.mathnet.ru/eng/sjvm486
  • https://www.mathnet.ru/eng/sjvm/v15/i4/p359
  • This publication is cited in the following 22 articles:
    1. Xueyu QIN, Jian YU, Xin ZHANG, Zhenhua JIANG, Chao YAN, “Novel adaptive IMEX two-step Runge-Kutta temporal discretization methods for unsteady flows”, Chinese Journal of Aeronautics, 2025, 103442  crossref
    2. Maksim I. Ivanov, Igor A. Kremer, Yuri M. Laevsky, “Non-isothermal filtration problem: Two-temperature computational model”, Journal of Computational Physics, 531 (2025), 113941  crossref
    3. Maksim I. Ivanov, Igor A. Kremer, Yuri M. Laevsky, “Explicit–implicit schemes for non-isothermal filtration problem: Single-temperature model”, Journal of Computational and Applied Mathematics, 440 (2024), 115639  crossref
    4. Uygulaana Kalachikova, Dmitry Ammosov, “Advancing wave equation analysis in dual-continuum systems: A partial learning approach with discrete empirical interpolation and deep neural networks”, Journal of Computational and Applied Mathematics, 443 (2024), 115755  crossref
    5. Olga O. Kozeeva, Igor V. Chukhraev, 2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE), 2024, 1  crossref
    6. Maria Vasilyeva, Richard B. Coffin, Ingo Pecher, “Decoupled multiscale numerical approach for reactive transport in marine sediment column”, Computer Methods in Applied Mechanics and Engineering, 428 (2024), 117087  crossref
    7. Maria Vasilyeva, “Implicit-Explicit schemes for decoupling multicontinuum problems in porous media”, Journal of Computational Physics, 519 (2024), 113425  crossref
    8. S. I. Bezrodnykh, S. V. Pikulin, “Numerical-Analytical Method for the Burgers Equation with a Periodic Boundary Condition”, J Math Sci, 2024  crossref
    9. Maria Vasilyeva, Sergei Stepanov, Alexey Sadovski, Stephen Henry, “Uncoupling Techniques for Multispecies Diffusion–Reaction Model”, Computation, 11:8 (2023), 153  crossref
    10. Maria Vasilyeva, Alexey Sadovski, D. Palaniappan, “Multiscale solver for multi-component reaction–diffusion systems in heterogeneous media”, Journal of Computational and Applied Mathematics, 427 (2023), 115150  crossref
    11. Youwen Wang, Maria Vasilyeva, Alexey Sadovski, 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES, 2872, 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES, 2023, 120083  crossref
    12. Aleksei Tyrylgin, Sergei Stepanov, Dmitry Ammosov, Aleksandr Grigorev, Maria Vasilyeva, “Partial Learning Using Partially Explicit Discretization for Multicontinuum/Multiscale Problems with Limited Observation: Dual Continuum Heterogeneous Poroelastic Media Simulation”, Mathematics, 10:15 (2022), 2629  crossref
    13. Khayitkulov B.Kh., “Finite-Difference Method For Solving Non-Stationary Problems of Convection-Diffusion Control”, Int. J. Geotech. Earthq., 2021, no. 57, 45–52  crossref  isi  scopus
    14. Juncu G., Nicola A., Popa C., “Splitting Methods For the Numerical Solution of Multi-Component Mass Transfer Problems”, Math. Comput. Simul., 152 (2018), 1–14  crossref  mathscinet  isi  scopus
    15. V. I. Vasil'ev, M. V. Vasil'eva, Yu. M. Laevskii, T. S. Timofeeva, “Numerical simulation of two-phase fluid filtration in heterogeneous media”, J. Appl. Industr. Math., 11:2 (2017), 289–295  mathnet  crossref  crossref  elib
    16. Kh. M. Gamzaev, “Chislennyi metod resheniya koeffitsientnoi obratnoi zadachi dlya uravneniya diffuzii–konvektsii–reaktsii”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2017, no. 50, 67–78  mathnet  crossref  elib
    17. U. S. Gavrileva, V. N. Alekseev, M. V. Vasileva, “Techenie i perenos v perforirovannykh i treschinovatykh oblastyakh s neodnorodnymi granichnymi usloviyami Robina”, Matematicheskie zametki SVFU, 24:3 (2017), 65–77  mathnet  crossref  elib
    18. L. A. Krukier, B. L. Krukier, Yu-Mei Huang, “The skew-symmetric iterative method for solving the convection-diffusion-reaction equation with the alternating-sign reaction coefficient”, Num. Anal. Appl., 9:1 (2016), 57–65  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    19. M. V. Vasileva, V. I. Vasilev, T. S. Timofeeva, “Chislennoe reshenie metodom konechnykh elementov zadach diffuzionnogo i konvektivnogo perenosa v silno geterogennykh poristykh sredakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 158, no. 2, Izd-vo Kazanskogo un-ta, Kazan, 2016, 243–261  mathnet  elib
    20. Sivtsev P.V., Vabishchevich P.N., Vasilyeva M.V., “Numerical Simulation of Thermoelasticity Problems on High Performance Computing Systems”, Finite Difference Methods, Theory and Applications, Lecture Notes in Computer Science, 9045, eds. Dimov I., Farago I., Vulkov L., Springer-Verlag Berlin, 2015, 364–370  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:1948
    Full-text PDF :946
    References:108
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025