Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2011, Volume 14, Number 3, Pages 297–302 (Mi sjvm443)  

This article is cited in 6 scientific papers (total in 6 papers)

A fifth order iterative method for solving nonlinear equations

M. Rafiullah

Dept. of Mathematics, COMSATS Institute of Information Technology, Lahore, Pakistan
Full-text PDF (163 kB) Citations (6)
References:
Abstract: The object of this paper is to construct a new efficient iterative method for solving nonlinear equations. This method is mainly based on M. Javidi's paper [1] by using a new scheme of a modified homotopy perturbation method. This new method is of the fifth order of convergence, and it is compared with the second, third, fifth, and sixth order methods. Some numerical test problems are given to show the accuracy and fast convergence of the method proposed.
Key words: homotopy perturbation method, nonlinear equations, iterative methods, convergence analysis, root finding techniques.
Received: 06.11.2009
Revised: 22.11.2010
English version:
Numerical Analysis and Applications, 2011, Volume 4, Issue 3, Pages 239–243
DOI: https://doi.org/10.1134/S1995423911030062
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Rafiullah, “A fifth order iterative method for solving nonlinear equations”, Sib. Zh. Vychisl. Mat., 14:3 (2011), 297–302; Num. Anal. Appl., 4:3 (2011), 239–243
Citation in format AMSBIB
\Bibitem{Raf11}
\by M.~Rafiullah
\paper A fifth order iterative method for solving nonlinear equations
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 3
\pages 297--302
\mathnet{http://mi.mathnet.ru/sjvm443}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 3
\pages 239--243
\crossref{https://doi.org/10.1134/S1995423911030062}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960819885}
Linking options:
  • https://www.mathnet.ru/eng/sjvm443
  • https://www.mathnet.ru/eng/sjvm/v14/i3/p297
  • This publication is cited in the following 6 articles:
    1. Shahid Abdullah, Neha Choubey, Suresh Dara, “Optimal fourth- and eighth-order iterative methods for solving nonlinear equations with basins of attraction”, J. Appl. Math. Comput., 70:4 (2024), 3477  crossref
    2. Abdul-Hassan N.Ya., Ali A.H., Park Ch., “A New Fifth-Order Iterative Method Free From Second Derivative For Solving Nonlinear Equations”, J. Appl. Math. Comput., 2021  crossref  mathscinet  isi  scopus
    3. Qureshi S., Ramos H., Soomro A.K., “A New Nonlinear Ninth-Order Root-Finding Method With Error Analysis and Basins of Attraction”, Mathematics, 9:16 (2021), 1996  crossref  isi  scopus
    4. Liu Ch.-Sh., El-Zahar E.R., Chang Ch.-W., “Three Novel Fifth-Order Iterative Schemes For Solving Nonlinear Equations”, Math. Comput. Simul., 187 (2021), 282–293  crossref  mathscinet  isi  scopus
    5. Abro H.A., Shaikh M.M., “A New Time-Efficient and Convergent Nonlinear Solver”, Appl. Math. Comput., 355 (2019), 516–536  crossref  mathscinet  zmath  isi  scopus
    6. Muhammad Rafiullah, Dure Jabeen, “New Eighth and Sixteenth Order Iterative Methods to Solve Nonlinear Equations”, Int. J. Appl. Comput. Math, 3:3 (2017), 2467  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :108
    References:47
    First page:11
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025