Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2011, Volume 14, Number 3, Pages 291–296 (Mi sjvm442)  

This article is cited in 18 scientific papers (total in 18 papers)

A continuous approximation for a 1D analogue of the Gol'dshtik model for separated flows of incompressible fluid

D. K. Potapov

St. Petersburg State University, Faculty of Applied Mathematics and Control Processes, St. Petersburg
References:
Abstract: A modification of a 1D analogue of the Gol'dshtik mathematical model for separated flows of incompressible fluid is considered. The model is a nonlinear differential equation with a boundary condition. Nonlinearity in the equation is continuous and depends on a small parameter. When this parameter tends to zero, we have a discontinuous nonlinearity. The results of the solutions are in accord with the results obtained for the 1D analogue of the Gol'dshtik model for separated flows of incompressible fluid.
Key words: mathematical model, separated flows, nonlinear differential equation, discontinuous nonlinearity, continuous approximation.
Received: 16.06.2010
English version:
Numerical Analysis and Applications, 2011, Volume 4, Issue 3, Pages 234–238
DOI: https://doi.org/10.1134/S1995423911030050
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: D. K. Potapov, “A continuous approximation for a 1D analogue of the Gol'dshtik model for separated flows of incompressible fluid”, Sib. Zh. Vychisl. Mat., 14:3 (2011), 291–296; Num. Anal. Appl., 4:3 (2011), 234–238
Citation in format AMSBIB
\Bibitem{Pot11}
\by D.~K.~Potapov
\paper A continuous approximation for a~1D analogue of the Gol'dshtik model for separated flows of incompressible fluid
\jour Sib. Zh. Vychisl. Mat.
\yr 2011
\vol 14
\issue 3
\pages 291--296
\mathnet{http://mi.mathnet.ru/sjvm442}
\transl
\jour Num. Anal. Appl.
\yr 2011
\vol 4
\issue 3
\pages 234--238
\crossref{https://doi.org/10.1134/S1995423911030050}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79960771577}
Linking options:
  • https://www.mathnet.ru/eng/sjvm442
  • https://www.mathnet.ru/eng/sjvm/v14/i3/p291
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:529
    Full-text PDF :118
    References:57
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024