Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2010, Volume 13, Number 4, Pages 387–401 (Mi sjvm414)  

Asymptotic error estimates of a linearized projection-difference method for a differential equation with a monotone operator

P. V. Vinogradovaa, A. G. Zarubinb

a Far Eastern State Transport University, Khabarovsk
b Pacific National University
References:
Abstract: In this paper, we study a projection-difference method for the Cauchy problem for an operator-differential equation with a self-adjoint leading operator $A(t)$ and a non-linear monotone subordinate operator $K(\cdot)$ in a Hilbert space. This method leads to solving a system of linear algebraic equations at each time level. Error estimates for the approximate solutions as well as for the fractional powers of the operator $A(t)$ are obtained. The method is applied to a model parabolic problem.
Key words: operator-differential equation, monotone operator, difference scheme, convergence rate, Faedo–Galerkin method.
Received: 19.01.2010
English version:
Numerical Analysis and Applications, 2010, Volume 3, Issue 4, Pages 317–328
DOI: https://doi.org/10.1134/S1995423910040038
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: P. V. Vinogradova, A. G. Zarubin, “Asymptotic error estimates of a linearized projection-difference method for a differential equation with a monotone operator”, Sib. Zh. Vychisl. Mat., 13:4 (2010), 387–401; Num. Anal. Appl., 3:4 (2010), 317–328
Citation in format AMSBIB
\Bibitem{VinZar10}
\by P.~V.~Vinogradova, A.~G.~Zarubin
\paper Asymptotic error estimates of a~linearized projection-difference method for a~differential equation with a~monotone operator
\jour Sib. Zh. Vychisl. Mat.
\yr 2010
\vol 13
\issue 4
\pages 387--401
\mathnet{http://mi.mathnet.ru/sjvm414}
\transl
\jour Num. Anal. Appl.
\yr 2010
\vol 3
\issue 4
\pages 317--328
\crossref{https://doi.org/10.1134/S1995423910040038}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650374802}
Linking options:
  • https://www.mathnet.ru/eng/sjvm414
  • https://www.mathnet.ru/eng/sjvm/v13/i4/p387
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:349
    Full-text PDF :98
    References:70
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024